Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/19/10.1063/1.4935971
1.
1.B. R. Landry and J. E. Subotnik, J. Chem. Phys. 135, 191101 (2011).
http://dx.doi.org/10.1063/1.3663870
2.
2.L. J. Wang and D. Beljonne, J. Chem. Phys. 139, 064316 (2013).
http://dx.doi.org/10.1063/1.4817856
3.
3.X. Gao, H. Geng, Q. Peng, J. Ren, Y. Yi, D. Wang, and Z. Shuai, J. Phys. Chem. C 118, 6631 (2014).
http://dx.doi.org/10.1021/jp412782n
4.
4.X. Gao, Q. Peng, Y. Niu, D. Wang, and Z. Shuai, Phys. Chem. Chem. Phys. 14, 14207 (2012).
http://dx.doi.org/10.1039/c2cp40347a
5.
5.T. Nelson, S. Fernandez-Alberti, A. E. Roitberg, and S. Tretiak, Acc. Chem. Res. 47, 1155 (2014).
http://dx.doi.org/10.1021/ar400263p
6.
6.L. J. Wang, Y. Olivier, O. V. Prezhdo, and D. Beljonne, J. Phys. Chem. Lett. 5, 3345 (2014).
http://dx.doi.org/10.1021/jz5015955
7.
7.S. Hammes-Schiffer and J. C. Tully, J. Chem. Phys. 101, 4657 (1994).
http://dx.doi.org/10.1063/1.467455
8.
8.J.-Y. Fang and S. Hammes-Schiffer, J. Chem. Phys. 110, 11166 (1999).
http://dx.doi.org/10.1063/1.479058
9.
9.P. Ehrenfest, Z. Phys. 45, 455 (1927).
http://dx.doi.org/10.1007/BF01329203
10.
10.L. J. Wang, D. Beljonne, L. Chen, and Q. Shi, J. Chem. Phys. 134, 244116 (2011).
http://dx.doi.org/10.1063/1.3604561
11.
11.J. C. Tully, J. Chem. Phys. 93, 1061 (1990).
http://dx.doi.org/10.1063/1.459170
12.
12.P. V. Parandekar and J. C. Tully, J. Chem. Phys. 122, 094102 (2005).
http://dx.doi.org/10.1063/1.1856460
13.
13.J. C. Tully, J. Chem. Phys. 137, 22A301 (2012).
http://dx.doi.org/10.1063/1.4757762
14.
14.A. Zhugayevych and S. Tretiak, Annu. Rev. Phys. Chem. 66, 305 (2015).
http://dx.doi.org/10.1146/annurev-physchem-040214-121440
15.
15.L. J. Wang, R. Long, and O. V. Prezhdo, Annu. Rev. Phys. Chem. 66, 549 (2015).
http://dx.doi.org/10.1146/annurev-physchem-040214-121359
16.
16.M. Barbatti, WIREs: Comput. Mol. Sci. 1, 620 (2011).
http://dx.doi.org/10.1002/wcms.64
17.
17.L. J. Wang, O. V. Prezhdo, and D. Beljonne, Phys. Chem. Chem. Phys. 17, 12395 (2015).
http://dx.doi.org/10.1039/C5CP00485C
18.
18.L. J. Wang and D. Beljonne, J. Phys. Chem. Lett. 4, 1888 (2013).
http://dx.doi.org/10.1021/jz400871j
19.
19.L. J. Wang and O. V. Prezhdo, J. Phys. Chem. Lett. 5, 713 (2014).
http://dx.doi.org/10.1021/jz500025c
20.
20.A. V. Akimov and O. V. Prezhdo, Phys. Rev. Lett. 113, 153003 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.153003
21.
21.L. J. Wang, D. Trivedi, and O. V. Prezhdo, J. Chem. Theory Comput. 10, 3598 (2014).
http://dx.doi.org/10.1021/ct5003835
22.
22.L. J. Wang, A. E. Sifain, and O. V. Prezhdo, J. Phys. Chem. Lett. 6, 3827 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b01502
23.
23.K. Hyeon-Deuk and O. V. Prezhdo, ACS Nano 6, 1239 (2012).
http://dx.doi.org/10.1021/nn2038884
24.
24.K. Hyeon-Deuk and O. V. Prezhdo, Nano Lett. 11, 1845 (2011).
http://dx.doi.org/10.1021/nl200651p
25.
25.H. Zhu, Y. Yang, K. Hyeon-Deuk, M. Califano, N. Song, Y. Wang, W. Zhang, O. V. Prezhdo, and T. Lian, Nano Lett. 14, 1263 (2014).
http://dx.doi.org/10.1021/nl4041687
26.
26.K. Hyeon-Deuk, J. Kim, and O. V. Prezhdo, J. Phys. Chem. Lett. 6, 244 (2015).
http://dx.doi.org/10.1021/jz502505m
27.
27.S. S. Skourtis and S. Mukamel, Chem. Phys. 197, 367 (1995).
http://dx.doi.org/10.1016/0301-0104(95)00167-M
28.
28.O. V. Prezhdo and V. V. Kisil, Phys. Rev. A 56, 162 (1997).
http://dx.doi.org/10.1103/PhysRevA.56.162
29.
29.R. Kapral and G. Ciccotti, J. Chem. Phys. 110, 8919 (1999).
http://dx.doi.org/10.1063/1.478811
30.
30.E. R. Bittner and P. J. Rossky, J. Chem. Phys. 103, 8130 (1995).
http://dx.doi.org/10.1063/1.470177
31.
31.O. Prezhdo and P. Rossky, Phys. Rev. Lett. 81, 5294 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.5294
32.
32.O. V. Prezhdo, J. Chem. Phys. 111, 8366 (1999).
http://dx.doi.org/10.1063/1.480178
33.
33.M. D. Hack and D. G. Truhlar, J. Chem. Phys. 114, 9305 (2001).
http://dx.doi.org/10.1063/1.1368388
34.
34.M. J. Bedard-Hearn, R. E. Larsen, and B. J. Schwartz, J. Chem. Phys. 123, 234106 (2005).
http://dx.doi.org/10.1063/1.2131056
35.
35.G. Granucci and M. Persico, J. Chem. Phys. 126, 134114 (2007).
http://dx.doi.org/10.1063/1.2715585
36.
36.A. W. Jasper and D. G. Truhlar, J. Chem. Phys. 127, 194306 (2007).
http://dx.doi.org/10.1063/1.2798763
37.
37.J. E. Subotnik and N. Shenvi, J. Chem. Phys. 134, 024105 (2011).
http://dx.doi.org/10.1063/1.3506779
38.
38.A. E. Sifain, L. J. Wang, and O. V. Prezhdo, J. Chem. Phys. 142, 224102 (2015).
http://dx.doi.org/10.1063/1.4922162
39.
39.E. Neria and A. Nitzan, J. Chem. Phys. 99, 1109 (1993).
http://dx.doi.org/10.1063/1.465409
40.
40.C. Zhu, A. W. Jasper, and D. G. Truhlar, J. Chem. Phys. 120, 5543 (2004).
http://dx.doi.org/10.1063/1.1648306
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/19/10.1063/1.4935971
Loading
/content/aip/journal/jcp/143/19/10.1063/1.4935971
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/19/10.1063/1.4935971
2015-11-17
2016-09-30

Abstract

Recent years have witnessed substantial progress in the surface hopping (SH) formulation of non-adiabaticmolecular dynamics. A generalization of the traditional fewest switches SH (FSSH), global flux SH (GFSH) utilizes the gross population flow between states to derive SH probabilities. The Liouville space formulation of FSSH puts state populations and coherences on equal footing, by shifting the hopping dynamics from Hilbert to Liouville space. Both ideas have shown superior results relative to the standard FSSH in Hilbert space, which has been the most popular approach over the past two and a half decades. By merging the two ideas, we develop GFSH in Liouville space. The new method is nearly as straightforward as the standard FSSH, and carries comparable computational expense. Tested with a representative super-exchange model, it gives the best performance among all existing techniques in the FSSH series. The obtained numerical results match almost perfectly the exact quantum mechanical solutions. Moreover, the results are nearly invariant under the choice of a basis state representation for SH, in contrast to the earlier techniques which exhibit notable basis set dependence. Unique to the developed approach, this property is particularly encouraging, because exact quantum dynamics is representation independent. GFSH in Liouville space significantly improves accuracy and applicability of SH for a broad range of chemical and physical processes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/19/1.4935971.html;jsessionid=g0paO5gd9Z99hZfVlkgIKgfF.x-aip-live-03?itemId=/content/aip/journal/jcp/143/19/10.1063/1.4935971&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/19/10.1063/1.4935971&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/19/10.1063/1.4935971'
Right1,Right2,Right3,