Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/19/10.1063/1.4936129
1.
1.Anomalous Transport: Foundations and Applications, edited by R. Klages, G. Radons, and I. Sokolov (Wiley-VCH Verlag, Weinheim, Germany, 2009).
2.
2.I. M. Sokolov, Soft Matter 8, 9043 (2012).
http://dx.doi.org/10.1039/c2sm25701g
3.
3.R. Metzler, J. H. Jeon, and A. G. Cherstvy, Phys. Chem. 16, 2412824164 (2014).
http://dx.doi.org/10.1039/C4CP03465A
4.
4.A. Einstein, Ann. Phys. 322, 549 (1905).
http://dx.doi.org/10.1002/andp.19053220806
5.
5.M. Von Smoluchowski, Ann. Phys. 326, 756 (1906).
http://dx.doi.org/10.1002/andp.19063261405
6.
6.W. Montfrooij and I. de Schepper, Phys. Rev. A 39, 2731 (1989).
http://dx.doi.org/10.1103/PhysRevA.39.2731
7.
7.J. Boon and S. Yip, Molecular Hydrodynamics (McGraw Hill, NY, 1980).
8.
8.R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, 2001).
9.
9.G. R. Kneller, J. Chem. Phys. 134, 224106 (2011).
http://dx.doi.org/10.1063/1.3598483
10.
10.R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
http://dx.doi.org/10.1143/JPSJ.12.570
11.
11.S. Stachura and G. R. Kneller, Mol. Simul. 40, 245 (2014).
http://dx.doi.org/10.1080/08927022.2013.840902
12.
12.G. R. Kneller, K. Baczynski, and M. Pasenkiewicz-Gierula, J. Chem. Phys. 135, 141105 (2011).
http://dx.doi.org/10.1063/1.3651800
13.
13.E. Flenner, J. Das, M. Rheinstädter, and I. Kosztin, Phys. Rev. E 79, 11907 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.011907
14.
14.J. H. Jeon, H. Monne, M. Javanainen, and R. Metzler, Phys. Rev. Lett. 109, 188103 (2012).
http://dx.doi.org/10.1103/physrevlett.109.188103
15.
15.P. Schwille, J. Korlach, and W. Webb, Cytometry 36, 176 (1999).
http://dx.doi.org/10.1002/(SICI)1097-0320(19990701)36:3<176::AID-CYTO5>3.0.CO;2-F
16.
16.S. Chiantia, J. Ries, and P. Schwille, Biochim. Biophys. Acta, Biomembr. 1788, 225 (2009).
http://dx.doi.org/10.1016/j.bbamem.2008.08.013
17.
17.W. L. Jorgensen and J. Tirado-Rives, J. Am. Chem. Soc. 110, 1657 (1988).
http://dx.doi.org/10.1021/ja00214a001
18.
18.W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).
http://dx.doi.org/10.1021/ja9621760
19.
19.S. J. Marrink, A. H. de Vries, and A. E. Mark, J. Phys. Chem. B 108, 750 (2004).
http://dx.doi.org/10.1021/jp036508g
20.
20.S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de Vries, J. Phys. Chem. B 111, 7812 (2007).
http://dx.doi.org/10.1021/jp071097f
21.
21.B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).
http://dx.doi.org/10.1021/ct700301q
22.
22.A. Oppenheim and W. Schafer, Digital Signal Processing (Prentice Hall, Englewood Cliffs, NJ, 1975).
23.
23.A. Papoulis, Probablity, Random Variables, and Stochastic Processes, 3rd ed. (McGraw Hill, NY, 1991).
24.
24.S. Haykin, Adaptive Filter Theory (Prentice Hall, 1996).
25.
25.A. Dechant, E. Lutz, D. A. Kessler, and E. Barkai, Phys. Rev. X 4, 011022 (2014).
http://dx.doi.org/10.1103/PhysRevX.4.011022
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/19/10.1063/1.4936129
Loading
/content/aip/journal/jcp/143/19/10.1063/1.4936129
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/19/10.1063/1.4936129
2015-11-20
2016-12-08

Abstract

Anomalous diffusion processes are usually detected by analyzing the time-dependent mean square displacement of the diffusing particles. The latter evolves asymptotically as () ∼ 2, where is the fractional diffusion constant and 0 < < 2. In this article we show that both and can also be extracted from the low-frequency Fourier spectrum of the corresponding velocity autocorrelation function. This offers a simple method for the interpretation of quasielastic neutron scattering spectra from complex (bio)molecular systems, in which subdiffusive transport is frequently encountered. The approach is illustrated and validated by analyzingmolecular dynamics simulations of molecular diffusion in a lipid POPC bilayer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/19/1.4936129.html;jsessionid=FLnVtG9L7ethxHg01O5i4-qF.x-aip-live-03?itemId=/content/aip/journal/jcp/143/19/10.1063/1.4936129&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/19/10.1063/1.4936129&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/19/10.1063/1.4936129'
Right1,Right2,Right3,