Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/2/10.1063/1.4923165
1.
1.R. Criegee and G. Wenner, J. Liebigs Ann. Chem. 564, 9 (1949).
http://dx.doi.org/10.1002/jlac.19495640103
2.
2.W. Sander, Angew. Chem., Int. Ed. 53, 362 (2014).
http://dx.doi.org/10.1002/anie.201305736
3.
3.W. Sander, Angew. Chem., Int. Ed. Engl. 29, 344 (1990).
http://dx.doi.org/10.1002/anie.199003441
4.
4.W. H. Bunnelle, Chem. Rev. 91, 335 (1991).
http://dx.doi.org/10.1021/cr00003a003
5.
5.S. Hatakeyama and H. Akimoto, Res. Chem. Intermed. 20, 503 (1994).
http://dx.doi.org/10.1163/156856794X00432
6.
6.O. Horie and G. K. Moortgat, Acc. Chem. Res. 31, 387 (1998).
http://dx.doi.org/10.1021/ar9702740
7.
7.D. Johnson and G. Marston, Chem. Soc. Rev. 37, 699 (2008).
http://dx.doi.org/10.1039/b704260b
8.
8.R. M. Harrison, J. Yin, R. M. Tilling, X. Cai, P. W. Seakins, J. R. Hopkins, D. L. Lansley, A. C. Lewis, M. C. Hunter, D. E. Heard, L. J. Carpenter, D. J. Creasey, J. D. Lee, M. J. Pilling, N. Carslaw, K. M. Emmerson, A. Redington, R. G. Derwent, D. Ryall, G. Mills, and S. A. Penkett, Sci. Total Environ. 360, 5 (2006).
http://dx.doi.org/10.1016/j.scitotenv.2005.08.053
9.
9.K. E. Leather, M. R. McGillen, M. C. Cooke, S. R. Utembe, A. T. Archibald, M. E. Jenkin, R. G. Derwent, D. E. Shallcross, and C. J. Percival, Atmos. Chem. Phys. 12, 469 (2012).
http://dx.doi.org/10.5194/acp-12-469-2012
10.
10.R. L. Mauldin, T. Berndt, M. Sipilä, P. Paasonen, T. Petäjä, S. Kim, T. Kurtén, F. Stratmann, V.-M. Kerminen, and M. Kulmala, Nature 488, 193 (2012).
http://dx.doi.org/10.1038/nature11278
11.
11.K. J. Heaton, R. L. Sleighter, P. G. Hatcher, W. A. Hall, and M. V. Johnston, Environ. Sci. Technol. 43, 7797 (2009).
http://dx.doi.org/10.1021/es901214p
12.
12.Y. Ma, R. A. Porter, D. Chappell, A. T. Russell, and G. Marston, Phys. Chem. Chem. Phys. 11, 4184 (2009).
http://dx.doi.org/10.1039/b818750a
13.
13.C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, E. P. F. Lee, J. M. Dyke, D. W. K. Mok, D. E. Shallcross, and C. J. Percival, Phys. Chem. Chem. Phys. 14, 10391 (2012).
http://dx.doi.org/10.1039/c2cp40294g
14.
14.O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, Science 335, 204 (2012).
http://dx.doi.org/10.1126/science.1213229
15.
15.C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B. Rotavera, E. P. F. Lee, J. M. Dyke, D. K. W. Mok, D. L. Osborn, and C. J. Percival, Science 340, 177 (2013).
http://dx.doi.org/10.1126/science.1234689
16.
16.F. Liu, J. M. Beames, A. M. Green, and M. I. Lester, J. Phys. Chem. A 118, 2298 (2014).
http://dx.doi.org/10.1021/jp412726z
17.
17.C. A. Taatjes, D. E. Shallcross, and C. J. Percival, Phys. Chem. Chem. Phys. 16, 1704 (2014).
http://dx.doi.org/10.1039/c3cp52842a
18.
18.J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045 (2012).
http://dx.doi.org/10.1021/ja310603j
19.
19.L. Sheps, J. Phys. Chem. Lett. 4, 4201 (2013).
http://dx.doi.org/10.1021/jz402191w
20.
20.W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys. 16, 10438 (2014).
http://dx.doi.org/10.1039/c4cp00877d
21.
21.Y.-T. Su, Y.-H. Huang, H. A. Witek, and Y.-P. Lee, Science 340, 174 (2013).
http://dx.doi.org/10.1126/science.1234369
22.
22.M. Nakajima and Y. Endo, J. Chem. Phys. 139, 101103 (2013).
http://dx.doi.org/10.1063/1.4821165
23.
23.M. C. McCarthy, L. Cheng, K. N. Crabtree, O. Martinez, T. L. Nguyen, C. C. Womack, and J. F. Stanton, J. Phys. Chem. Lett. 4, 4133 (2013).
http://dx.doi.org/10.1021/jz4023128
24.
24.A. M. Daly, B. J. Drouin, and S. Yu, J. Mol. Spectrosc. 297, 16 (2014).
http://dx.doi.org/10.1016/j.jms.2014.01.002
25.
25.J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Chem. Phys. 138, 244307 (2013).
http://dx.doi.org/10.1063/1.4810865
26.
26.L. Sheps, A. M. Scully, and K. Au, Phys. Chem. Chem. Phys. 16, 26701 (2014).
http://dx.doi.org/10.1039/C4CP04408H
27.
27.M. Nakajima and Y. Endo, J. Chem. Phys. 140, 011101 (2014).
http://dx.doi.org/10.1063/1.4861494
28.
28.F. Liu, J. M. Beames, A. S. Petit, A. B. McCoy, and M. I. Lester, Science 345, 1596 (2014).
http://dx.doi.org/10.1126/science.1257158
29.
29.M. Nakajima, Q. Yue, and Y. Endo, J. Mol. Spectrosc. 310, 109 (2015).
http://dx.doi.org/10.1016/j.jms.2014.11.004
30.
30.M. C. Smith, W.-L. Ting, C.-H. Chang, K. Takahashi, K. A. Boering, and J. J.-M. Lin, J. Chem. Phys. 141, 074302 (2014).
http://dx.doi.org/10.1063/1.4892582
31.
31.H.-Y. Lin, Y.-H. Huang, X. Wang, J. M. Bowman, Y. Nishimura, H. A. Witek, and Y.-P. Lee, Nat. Commun. 6, 7012 (2015).
http://dx.doi.org/10.1038/ncomms8012
32.
32.M. Kettner, A. Karton, A. J. McKinley, and D. A. Wild, Chem. Phys. Lett. 621, 193 (2015).
http://dx.doi.org/10.1016/j.cplett.2014.12.037
33.
33.F. Liu, J. M. Beames, and M. I. Lester, J. Chem. Phys. 141, 234312 (2014).
http://dx.doi.org/10.1063/1.4903961
34.
34.M. Nakajima, Q. Yue, J. Li, H. Guo, and Y. Endo, Chem. Phys. Lett. 621, 129 (2015).
http://dx.doi.org/10.1016/j.cplett.2014.12.039
35.
35.J. H. Lehman, H. Li, J. M. Beames, and M. I. Lester, J. Chem. Phys. 139, 141103 (2013).
http://dx.doi.org/10.1063/1.4824655
36.
36.S. Y. Grebenshchikov, Z.-W. Qu, H. Zhu, and R. Schinke, Phys. Chem. Chem. Phys. 9, 2044 (2007).
http://dx.doi.org/10.1039/b701020f
37.
37.E. P. F. Lee, D. K. W. Mok, D. E. Shallcross, C. J. Percival, D. L. Osborn, C. A. Taatjes, and J. M. Dyke, Chem.- Eur. J. 18, 12411 (2012).
http://dx.doi.org/10.1002/chem.201200848
38.
38.Q. Meng and H.-D. Meyer, J. Chem. Phys. 141, 124309 (2014).
http://dx.doi.org/10.1063/1.4896201
39.
39.K. Samanta, J. M. Beames, M. I. Lester, and J. E. Subotnik, J. Chem. Phys. 141, 134303 (2014).
http://dx.doi.org/10.1063/1.4894746
40.
40.R. Dawes, B. Jiang, and H. Guo, J. Am. Chem. Soc. 137, 50 (2015).
http://dx.doi.org/10.1021/ja510736d
41.
41.D.-R. Huang, L.-K. Chu, and Y.-P. Lee, J. Chem. Phys. 127, 234318 (2007).
http://dx.doi.org/10.1063/1.2807241
42.
42.S.-Y. Chen and Y.-P. Lee, J. Chem. Phys. 132, 114303 (2010).
http://dx.doi.org/10.1063/1.3352315
43.
43.B. Golec, J.-D. Chen, and Y.-P. Lee, J. Chem. Phys. 135, 224302 (2011).
http://dx.doi.org/10.1063/1.3664304
44.
44.S. Nandi, S. J. Blanksby, X. Zhang, M. R. Nimlos, D. C. Dayton, and G. B. Ellison, J. Phys. Chem. A 106, 7547 (2002).
http://dx.doi.org/10.1021/jp0126816
45.
45.Y.-H. Huang, J. Li, H. Guo, and Y.-P. Lee, J. Chem. Phys. 142, 214301 (2015).
http://dx.doi.org/10.1063/1.4921731
46.
46.J. Li, S. Carter, J. M. Bowman, R. Dawes, D. Xie, and H. Guo, J. Phys. Chem. Lett. 5, 2364 (2014).
http://dx.doi.org/10.1021/jz501059m
47.
47.J. M. Bowman, X. Wang, and Z. Homayoon, J. Mol. Spectrosc. 311, 2 (2015).
http://dx.doi.org/10.1016/j.jms.2014.12.012
48.
48.M. Nakajima and Y. Endo, J. Chem. Phys. 140, 134302 (2014).
http://dx.doi.org/10.1063/1.4869696
49.
49.W. G. Roeterdink, J. Bulthuis, E. P. F. Lee, D. Ding, and C. A. Taatjes, Chem. Phys. Lett. 598, 96 (2014).
http://dx.doi.org/10.1016/j.cplett.2014.03.009
50.
50.R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, Jr., J. A. Kerr, M. J. Rossi, and J. Troe, Summary of Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry (IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, 2001).
51.
51.C. C. Womack, M.-A. Martin-Drumel, G. G. Brown, R. W. Field, and M. C. McCarthy, Sci. Adv. 1(2), e1400105 (2015).
http://dx.doi.org/10.1126/sciadv.1400105
52.
52.A. Masaki, S. Tsunashima, and N. Washida, J. Chem. Phys. 99, 13126 (1995).
http://dx.doi.org/10.1021/j100035a014
53.
53.S. Enami, Y. Sakamoto, T. Yamanaka, S. Hashimoto, M. Kawasaki, K. Tonokura, and H. Tachikawa, Bull. Chem. Soc. Jpn. 81, 1250 (2008).
http://dx.doi.org/10.1246/bcsj.81.1250
54.
54.A. J. Eskola, D. Wojcik-Pastuszka, E. Ratajczak, and R. S. Timonen, Phys. Chem. Chem. Phys. 8, 1416 (2006).
http://dx.doi.org/10.1039/b516291b
55.
55.D. Stone, M. Blitz, L. Daubney, T. Ingham, and P. Seakins, Phys. Chem. Chem. Phys. 15, 19119 (2013).
http://dx.doi.org/10.1039/c3cp52466c
56.
56.Y.-T. Su, H.-Y. Lin, R. Putikam, H. Matsui, M. C. Lin, and Y.-P. Lee, Nat. Chem. 6, 477 (2014).
http://dx.doi.org/10.1038/nchem.1890
57.
57.B.-Z. Chen, J. M. Anglada, M.-B. Huang, and F. Kong, J. Phys. Chem. A 106, 1877 (2002).
http://dx.doi.org/10.1021/jp014319x
58.
58.R. Vogt, R. Sander, R. Von Glasow, and P. J. Crutzen, J. Atmos. Chem. 32, 375 (1999).
http://dx.doi.org/10.1023/A:1006179901037
59.
59.A. Saiz-Lopez, J. M. C. Plane, A. R. Baker, L. J. Carpenter, R. Von Glasow, J. C. G. Martín, G. McFiggans, and R. W. Saunders, Chem. Rev. 112, 1773 (2012).
http://dx.doi.org/10.1021/cr200029u
60.
60.S. Enami, J. Ueda, M. Goto, Y. Nakano, S. Aloisio, S. Hashimoto, and M. Kawasaki, J. Phys. Chem. A 108, 6347 (2004).
http://dx.doi.org/10.1021/jp0481815
61.
61.T. J. Gravestock, M. A. Blitz, W. J. Bloss, and D. E. Heard, ChemPhysChem 11, 3928 (2010).
http://dx.doi.org/10.1002/cphc.201000575
62.
62.V. G. Stefanopoulos, V. C. Papadimitriou, Y. G. Lazarou, and P. Papagiannakopoulos, J. Phys. Chem. A 112, 1526 (2008).
http://dx.doi.org/10.1021/jp7096789
63.
63.H. Huang, A. J. Eskola, and C. A. Taatjes, J. Phys. Chem. Lett. 3, 3399 (2012).
http://dx.doi.org/10.1021/jz301585c
64.
64.H. Huang, B. Rotavera, A. J. Eskola, and C. A. Taatjes, J. Phys. Chem. Lett. 4, 3824 (2013).
http://dx.doi.org/10.1021/jz402266q
65.
65.Z. J. Buras, R. M. I. Elsamra, and W. H. Green, J. Phys. Chem. Lett. 5, 2224 (2014).
http://dx.doi.org/10.1021/jz5008406
66.
66.R. Chhantyal-pun, A. Davey, D. E. Shallcross, C. J. Percival, and A. J. Orr-Ewing, Phys. Chem. Chem. Phys. 17, 3617 (2015).
http://dx.doi.org/10.1039/C4CP04198D
67.
67.W.-L. Ting, C.-H. Chang, Y.-F. Lee, H. Matsui, Y.-P. Lee, and J. J.-M. Lin, J. Chem. Phys. 141, 104308 (2014).
http://dx.doi.org/10.1063/1.4894405
68.
68.J. Sehested, T. Elllerman, and O. J. Nielsen, Int. J. Chem. Kinet. 26, 259 (1994).
http://dx.doi.org/10.1002/kin.550260204
69.
69.J. C. Mössinger, D. E. Shallcross, and R. A. Cox, J. Chem. Soc., Faraday Trans. 94, 1391 (1998).
http://dx.doi.org/10.1039/a709160e
70.
70.J. B. Koffend and S. R. Leone, Chem. Phys. Lett. 81, 136 (1981).
http://dx.doi.org/10.1016/0009-2614(81)85344-4
71.
71.T. F. Hunter, Chem. Phys. Lett. 90, 35 (1982).
http://dx.doi.org/10.1016/0009-2614(82)83320-4
72.
72.J. H. Lehman, H. Li, and M. I. Lester, Chem. Phys. Lett. 590, 16 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.10.029
73.
73.S. L. Baughcum and S. R. Leone, J. Chem. Phys. 72, 6531 (1980).
http://dx.doi.org/10.1063/1.439111
74.
74.L. Lu, J. M. Beames, and M. I. Lester, Chem. Phys. Lett. 598, 23 (2014).
http://dx.doi.org/10.1016/j.cplett.2014.02.049
75.
75.J. H. Kroll, J. S. Clarke, N. M. Donahue, J. G. Anderson, and K. L. Demerjian, J. Phys. Chem. A 105, 1554 (2001).
http://dx.doi.org/10.1021/jp002121r
76.
76.Y. Liu, K. D. Bayes, and S. P. Sander, J. Phys. Chem. A 118, 741 (2014).
http://dx.doi.org/10.1021/jp407058b
77.
77.G. E. Orzechowska and S. E. Paulson, Atmos. Environ. 36, 571 (2002).
http://dx.doi.org/10.1016/S1352-2310(01)00445-9
78.
78.J. H. Kroll, N. M. Donahue, V. J. Cee, K. L. Demerjian, and J. G. Anderson, J. Am. Chem. Soc. 124, 8518 (2002).
http://dx.doi.org/10.1021/ja0266060
79.
79.Y.-F. Lee and Y.-P. Lee, “Infrared absorption of iodomethylperoxy (syn-ICH2OO) radical generated upon photolysis of CH2I2 and O2 in solid para-H2,” Mol. Phys. (published online).
http://dx.doi.org/10.1080/00268976.2015.1012129
80.
80.L.-W. Chen, Y.-H. Huang, and Y.-P. Lee, “Simultaneous infrared detection of the syn-ICH2OO radical and Criegee intermediate CH2OO: The pressure dependence of the yield of CH2OO in the reaction CH2I + O2” (unpublished).
81.
81.Y.-H. Huang and Y.-P. Lee, J. Chem. Phys. 141, 164302 (2014).
http://dx.doi.org/10.1063/1.4897982
82.
82.T. L. Nguyen, M. C. McCarthy, and J. F. Stanton, “Relatively selective production of the simplest Criegee intermediate in a CH4/O2 electric discharge: Kinetic analysis of a plausible mechanism,” J. Phys. Chem. A (published online).
http://dx.doi.org/10.1021/jp510554g
83.
83.C. A. Taatjes, G. Meloni, T. M. Selby, A. J. Trevitt, D. L. Osborn, C. J. Percival, and D. E. Shallcross, J. Am. Chem. Soc. 130, 11883 (2008).
http://dx.doi.org/10.1021/ja804165q
84.
84.J. Kalinowski, P. Heinonen, I. Kilpeläinen, M. Räsänen, and R. B. Gerber, J. Phys. Chem. A 119, 2318 (2015).
http://dx.doi.org/10.1021/jp506525g
85.
85.J. Ahrens, P. T. M. Carlsson, N. Hertl, M. Olzmann, M. Pfeifle, J. L. Wolf, and T. Zeuch, Angew. Chem., Int. Ed. 53, 715 (2014).
http://dx.doi.org/10.1002/anie.201307327
86.
86.J. M. Anglada, R. Crehuet, and J. M. Bofill, Chem. - Eur. J. 5, 1809 (1999).
http://dx.doi.org/10.1002/(SICI)1521-3765(19990604)5:6¡1809::AID-CHEM1809¿3.0.CO2-N
87.
87.J. M. Anglada, J. M. Bofill, S. Olivella, and A. Solé, J. Am. Chem. Soc. 118, 4636 (1996).
http://dx.doi.org/10.1021/ja953858a
88.
88.J. Kalinowski, M. Räsänen, P. Heinonen, I. Kilpeläinen, and R. B. Gerber, Angew. Chem., Int. Ed. 53, 265 (2014).
http://dx.doi.org/10.1002/anie.201307286
89.
89.Y. Valadbeigi and H. Farrokhpour, Struct. Chem. 25, 1759 (2014).
http://dx.doi.org/10.1007/s11224-014-0455-x
90.
90.T.-N. Nguyen, R. Putikam, and M. C. Lin, J. Chem. Phys. 142, 124312 (2015).
http://dx.doi.org/10.1063/1.4914987
91.
91.L. Vereecken and J. S. Francisco, Chem. Soc. Rev. 41, 6259 (2012).
http://dx.doi.org/10.1039/c2cs35070j
92.
92.M. Kumar, D. H. Busch, B. Subramaniam, and W. H. Thompson, Phys. Chem. Chem. Phys. 16, 22968 (2014).
http://dx.doi.org/10.1039/C4CP03065F
93.
93.L. Vereecken, H. Harder, and A. Novelli, Phys. Chem. Chem. Phys. 16, 4039 (2014).
http://dx.doi.org/10.1039/c3cp54514h
94.
94.D. Stone, M. Blitz, L. Daubney, N. U. M. Howes, and P. Seakins, Phys. Chem. Chem. Phys. 16, 1139 (2014).
http://dx.doi.org/10.1039/C3CP54391A
95.
95.B. Ouyang, M. W. McLeod, R. L. Jones, and W. J. Bloss, Phys. Chem. Chem. Phys. 15, 17070 (2013).
http://dx.doi.org/10.1039/c3cp53024h
96.
96.S. Hatakeyama, H. Kobayashi, Z.-Y. Lin, H. Takagi, and H. Akimoto, J. Phys. Chem. 90, 4131 (1986).
http://dx.doi.org/10.1021/j100408a059
97.
97.T. Kurtén, J. R. Lane, S. Jørgensen, and H. G. Kjaergaard, J. Phys. Chem. A 115, 8669 (2011).
http://dx.doi.org/10.1021/jp203907d
98.
98.P. Aplincourt and M. F. Ruiz-López, J. Am. Chem. Soc. 122, 8990 (2000).
http://dx.doi.org/10.1021/ja000731z
99.
99.L. Jiang, Y. Xu, and A. Ding, J. Phys. Chem. A 114, 12452 (2010).
http://dx.doi.org/10.1021/jp107783z
100.
100.L. Vereecken, H. Harder, and A. Novelli, Phys. Chem. Chem. Phys. 14, 14682 (2012).
http://dx.doi.org/10.1039/c2cp42300f
101.
101.T. Berndt, T. Jokinen, M. Sipilä, R. L. Mauldin III, H. Herrmann, F. Stratmann, H. Junninen, and M. Kulmala, Atmos. Environ. 89, 603 (2014).
http://dx.doi.org/10.1016/j.atmosenv.2014.02.062
102.
102.F. Sauer, C. Schäfer, P. Neeb, O. Horie, and G. K. Moortgat, Atmos. Environ. 33, 229 (1999).
http://dx.doi.org/10.1016/S1352-2310(98)00152-6
103.
103.P. Neeb, F. Sauer, O. Horie, and G. K. Moortgat, Atmos. Environ. 31, 1417 (1997).
http://dx.doi.org/10.1016/S1352-2310(96)00322-6
104.
104.A. S. Hasson, A. W. Ho, K. T. Kuwata, and S. E. Paulson, J. Geophys. Res. 106, 34131, doi:10.1029/2001JD000597 (2001).
http://dx.doi.org/10.1029/2001JD000597
105.
105.A. S. Hasson, T. Kuwata, and S. E. Paulson, J. Geophys. Res. 106, 34143, doi:10.1029/2001JD000598 (2001).
http://dx.doi.org/10.1029/2001JD000598
106.
106.T. Berndt, J. Voigtländer, F. Stratmann, H. Junninen, R. L. Mauldin III, M. Sipilä, M. Kulmala, and H. Herrmann, Phys. Chem. Chem. Phys. 16, 19130 (2014).
http://dx.doi.org/10.1039/C4CP02345E
107.
107.W. Chao, J.-T. Hsieh, C.-H. Chang, and J. J.-M. Lin, Science 347, 751 (2015).
http://dx.doi.org/10.1126/science.1261549
108.
108.B. Ruscic, J. Phys. Chem. A 117, 11940 (2013).
http://dx.doi.org/10.1021/jp403197t
109.
109.Y. Scribano, N. Goldman, R. J. Saykally, and C. Leforestier, J. Phys. Chem. A 110, 5411 (2006).
http://dx.doi.org/10.1021/jp056759k
110.
110.T. R. Lewis, M. Blitz, D. E. Heard, and P. Seakins, Phys. Chem. Chem. Phys. 17, 4859 (2015).
http://dx.doi.org/10.1039/C4CP04750H
111.
111.A. B. Ryzhkov and P. A. Ariya, Chem. Phys. Lett. 367, 423 (2003).
http://dx.doi.org/10.1016/S0009-2614(02)01685-8
112.
112.A. B. Ryzhkov and P. A. Ariya, Phys. Chem. Chem. Phys. 6, 5042 (2004).
http://dx.doi.org/10.1039/b408414d
113.
113.O. Welz, A. J. Eskola, L. Sheps, B. Rotavera, J. D. Savee, A. M. Scheer, D. L. Osborn, D. Lowe, A. Murray Booth, P. Xiao, M. Anwar, H. Khan, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, Angew. Chem., Int. Ed. 53, 4547 (2014).
http://dx.doi.org/10.1002/anie.201400964
114.
114.B. Long, J.-R. Cheng, X. Tan, and W. Zhang, J. Mol. Struct.: THEOCHEM 916, 159 (2009).
http://dx.doi.org/10.1016/j.theochem.2009.09.028
115.
115.P. Aplincourt and M. F. Ruiz-López, J. Phys. Chem. A 104, 380 (2000).
http://dx.doi.org/10.1021/jp9928208
116.
116.P. Neeb, O. Horie, and G. K. Moortgat, J. Phys. Chem. A 102, 6778 (1998).
http://dx.doi.org/10.1021/jp981264z
117.
117.A. Jalan, J. W. Allen, and W. H. Green, Phys. Chem. Chem. Phys. 15, 16841 (2013).
http://dx.doi.org/10.1039/c3cp52598h
118.
118.Z. J. Buras, R. M. I. Elsamra, A. Jalan, J. E. Middaugh, and W. H. Green, J. Phys. Chem. A 118, 1997 (2014).
http://dx.doi.org/10.1021/jp4118985
119.
119.F. J. Lovas and R. D. Suenram, Chem. Phys. Lett. 51, 453 (1977).
http://dx.doi.org/10.1016/0009-2614(77)85398-0
120.
120.R. W. Murray and R. Jeyaraman, J. Org. Chem. 50, 2847 (1985).
http://dx.doi.org/10.1021/jo00216a007
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/2/10.1063/1.4923165
Loading
/content/aip/journal/jcp/143/2/10.1063/1.4923165
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/2/10.1063/1.4923165
2015-07-08
2016-09-25

Abstract

The Criegee intermediates, carbonyl oxides proposed by Criegee in 1949 as key intermediates in the ozonolysis of alkenes, play important roles in many aspects of atmospheric chemistry. Because direct detection of these gaseous intermediates was unavailable until recently, previous understanding of their reactions, derived from indirect experimental evidence, had great uncertainties. Recent laboratory detection of the simplest Criegee intermediate CHOO and some larger members, produced from ultraviolet irradiation of corresponding diiodoalkanes in O, with various methods such as photoionization, ultraviolet absorption, infrared absorption, and microwave spectroscopy opens a new door to improved understanding of the roles of these Criegee intermediates. Their structures and spectral parameters have been characterized; their significant zwitterionic nature is hence confirmed. CHOO, along with other products, has also been detected directly with microwave spectroscopy in gaseous ozonolysis reactions of ethene. The detailed kinetics of the source reaction, CHI + O, which is critical to laboratory studies of CHOO, are now understood satisfactorily. The kinetic investigations using direct detection identified some important atmospheric reactions, including reactions with NO, SO, water dimer, carboxylic acids, and carbonyl compounds. Efforts toward the characterization of larger Criegee intermediates and the investigation of related reactions are in progress. Some reactions of CHCHOO are found to depend on conformation. This perspective examines progress toward the direct spectral characterization of Criegee intermediates and investigations of the associated reaction kinetics, and indicates some unresolved problems and prospective challenges for this exciting field of research.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/2/1.4923165.html;jsessionid=YtCNf-IMwlC5cEoCddkWBcMO.x-aip-live-06?itemId=/content/aip/journal/jcp/143/2/10.1063/1.4923165&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/2/10.1063/1.4923165&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/2/10.1063/1.4923165'
Right1,Right2,Right3,