Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/20/10.1063/1.4936358
1.
1.J. Salençon, Handbook of Continuum Mechanics (Springer-Verlag, Berlin, 2001).
2.
2.Th. Voigtmann, Curr. Opin. Colloid Interface Sci. 19, 49 (2014).
http://dx.doi.org/10.1016/j.cocis.2014.11.001
3.
3.M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1989).
4.
4.M. Fuchs and M. E. Cates, Phys. Rev. Lett. 89, 248304 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.248304
5.
5.M. Fuchs and M. E. Cates, J. Rheol. 53, 957 (2009).
http://dx.doi.org/10.1122/1.3119084
6.
6.J. M. Brader, Th. Voigtmann, M. E. Cates, and M. Fuchs, Phys. Rev. Lett. 98, 058301 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.058301
7.
7.J. M. Brader, M. E. Cates, and M. Fuchs, Phys. Rev. Lett. 101, 138301 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.138301
8.
8.J. M. Brader, M. E. Cates, and M. Fuchs, Phys. Rev. E 86, 021403 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.021403
9.
9.W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Oxford University Press, 2009).
10.
10.R. G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, Oxford, 1998).
11.
11.J. M. Brader, Th. Voigtmann, M. Fuchs, R. G. Larson, and M. E. Cates, Proc. Natl. Acad. Sci. U. S. A. 106, 15186 (2009).
http://dx.doi.org/10.1073/pnas.0905330106
12.
12.S. Papenkort and Th. Voigtmann, J. Chem. Phys. 140, 164507 (2014).
http://dx.doi.org/10.1063/1.4872219
13.
13.S. Papenkort and Th. Voigtmann, J. Chem. Phys. 143, 044512 (2015).
http://dx.doi.org/10.1063/1.4927576
14.
14.A. Nicolas and M. Fuchs, e-print arXiv:1508.05071.
15.
15.K. Suzuki and H. Hayakawa, Phys. Rev. E 87, 012304 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.012304
16.
16.C. P. Amann and M. Fuchs, J. Rheol. 58, 1191 (2014).
http://dx.doi.org/10.1122/1.4881256
17.
17.M. Fuchs and M. E. Cates, Faraday Discuss. 123, 267 (2003).
http://dx.doi.org/10.1039/b205629a
18.
18.M. Fuchs and M. Ballauff, J. Chem. Phys. 122, 094707 (2005).
http://dx.doi.org/10.1063/1.1859285
19.
19.M. Fuchs and M. Ballauff, Colloids Surf., A 270–271, 232 (2005).
http://dx.doi.org/10.1016/j.colsurfa.2005.06.017
20.
20.J. J. Crassous, M. Siebenbürger, M. Ballauff, M. Drechsler, O. Henrich, and M. Fuchs, J. Chem. Phys. 125, 204906 (2006).
http://dx.doi.org/10.1063/1.2374886
21.
21.J. J. Crassous, M. Siebenbürger, M. Ballauff, M. Drechsler, D. Hajnal, O. Henrich, and M. Fuchs, J. Chem. Phys. 128, 204902 (2008).
http://dx.doi.org/10.1063/1.2921801
22.
22.M. Siebenbürger, M. Fuchs, H. Winter, and M. Ballauff, J. Rheol. 53, 707 (2009).
http://dx.doi.org/10.1122/1.3093088
23.
23.Th. Voigtmann, Eur. Phys. J. E 34, 106 (2011).
http://dx.doi.org/10.1140/epje/i2011-11106-8
24.
24.Th. Voigtmann, J. M. Brader, M. Fuchs, and M. E. Cates, Soft Matter 8, 4244 (2012).
http://dx.doi.org/10.1039/c2sm06891e
25.
25.C. P. Amann, M. Siebenbürger, M. Krüger, F. Weysser, and M. Fuchs, J. Rheol. 57, 149 (2013).
http://dx.doi.org/10.1122/1.4764000
26.
26.F. Frahsa, A. K. Bhattacharjee, J. Horbach, M. Fuchs, and Th. Voigtmann, J. Chem. Phys. 138, 12A513 (2013).
http://dx.doi.org/10.1063/1.4770336
27.
27.T. F. F. Faraga and J. M. Brader, J. Rheol. 56, 259 (2012).
http://dx.doi.org/10.1122/1.3676741
28.
28.J. Zausch, J. Horbach, M. Laurati, S. U. Egelhaaf, J. M. Brader, Th. Voigtmann, and M. Fuchs, J. Phys.: Condens. Matter 20, 404210 (2008).
http://dx.doi.org/10.1088/0953-8984/20/40/404210
29.
29.Y. H. Qian, D. D’Humières, and P. Lallemand, EPL 17, 479 (1992).
http://dx.doi.org/10.1209/0295-5075/17/6/001
30.
30.S. H. Kim and H. Pitsch, Phys. Fluids 19, 108101 (2007).
http://dx.doi.org/10.1063/1.2780194
31.
31.B. Dünweg and A. J. C. Ladd, Adv. Polym. Sci. 221, 89 (2009).
http://dx.doi.org/10.1007/978-3-540-87706-6_2
32.
32.J. G. Oldroyd, Proc. R. Soc. A 200, 523 (1950).
http://dx.doi.org/10.1098/rspa.1950.0035
33.
33.W. Götze and L. Sjögren, J. Math. Anal. Appl. 195, 230 (1995).
http://dx.doi.org/10.1006/jmaa.1995.1352
34.
34.Palabos V1.1r0, available at http://www.palabos.org.
35.
35.D. Hajnal and M. Fuchs, Eur. Phys. J. E 28, 125 (2009).
http://dx.doi.org/10.1140/epje/i2008-10361-0
36.
36.C. J. Koh, P. Hookham, and L. G. Leal, J. Fluid Mech. 266, 1 (1994).
http://dx.doi.org/10.1017/S0022112094000911
37.
37.P. R. Nott and J. F. Brady, J. Fluid Mech. 275, 157 (1994).
http://dx.doi.org/10.1017/S0022112094002326
38.
38.S. Oh, Y.-q. Song, D. I. Garagash, B. Lecampion, and J. Desroches, Phys. Rev. Lett. 114, 088301 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.088301
39.
39.G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967).
40.
40.R. R. Huilgol, Phys. Fluids 14, 1269 (2002).
http://dx.doi.org/10.1063/1.1448347
41.
41.R. R. Huilgol, B. Mena, and J. M. Piau, J. Non-Newtonian Fluid Mech. 102, 97 (2002).
http://dx.doi.org/10.1016/S0377-0257(01)00166-5
42.
42.I. A. Frigaard, G. Ngwa, and O. Scherzer, SIAM J. Appl. Math. 63, 1911 (2003).
http://dx.doi.org/10.1137/S0036139902400465
43.
43.M. Ballauff, J. M. Brader, S. U. Egelhaaf, M. Fuchs, J. Horbach, N. Koumakis, M. Krüger, M. Laurati, K. J. Mutch, G. Petekidis, M. Siebenbürger, Th. Voigtmann, and J. Zausch, Phys. Rev. Lett. 110, 215701 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.215701
44.
44.S. Fritschi, M. Fuchs, and T. Voigtmann, Soft Matter 10, 4822 (2014).
http://dx.doi.org/10.1039/C4SM00247D
45.
45.J. M. Brader, M. Siebenbürger, M. Ballauff, K. Reinheimer, M. Wilhelm, S. J. Frey, F. Weysser, and M. Fuchs, Phys. Rev. E 82, 061401 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.061401
46.
46.J.-L. Barrat and A. Lemaître, in Dynamical Heterogeneities in Glasses, Colloids and Granular Media, edited by L. Berhier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos (Oxford University Press, 2011), pp. 264297.
47.
47.P. Chaudhuri and J. Horbach, Phys. Rev. E 90, 040301(R) (2013).
http://dx.doi.org/10.1103/PhysRevE.90.040301
48.
48.J. Goyon, A. Colin, G. Ovarlez, A. Ajdari, and L. Bocquet, Nature (London) 454, 84 (2008).
http://dx.doi.org/10.1038/nature07026
49.
49.J. Goyon, A. Colin, and L. Bocquet, Soft Matter 6, 2668 (2010).
http://dx.doi.org/10.1039/c001930e
50.
50.A. Nicolas and J.-L. Barrat, Phys. Rev. Lett. 110, 138304 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.138304
51.
51.A. Nicolas and J.-L. Barrat, Faraday Discuss. 167, 567 (2013).
http://dx.doi.org/10.1039/c3fd00067b
52.
52.L. Sjögren, Physica A 322, 81 (2003).
http://dx.doi.org/10.1016/S0378-4371(02)01832-0
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/20/10.1063/1.4936358
Loading
/content/aip/journal/jcp/143/20/10.1063/1.4936358
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/20/10.1063/1.4936358
2015-11-24
2016-12-06

Abstract

We present a hybrid-lattice Boltzmann (LB) algorithm for calculating the flow of glass-forming fluids that are governed by integral constitutive equations with pronounced nonlinear, non-Markovian dependence of the stresses on the flow history. The LB simulation for the macroscopic flow fields is combined with the mode-coupling theory (MCT) of the glass transition as a microscopic theory, in the framework of the integration-through transients formalism. Using the combined LB-MCT algorithm, pressure-driven planar channel flow is studied for a schematic MCT model neglecting spatial correlations in the microscopic dynamics. The cessation dynamics after removal of the driving pressure gradient shows strong signatures of oscillatory flow both in the macroscopic fields and the microscopic correlation functions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/20/1.4936358.html;jsessionid=aeqId65Uu-ZJbTESXrJFiaZj.x-aip-live-06?itemId=/content/aip/journal/jcp/143/20/10.1063/1.4936358&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/20/10.1063/1.4936358&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/20/10.1063/1.4936358'
Right1,Right2,Right3,