Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/20/10.1063/1.4936403
1.
1.J. M. Bijvoet, A. F. Peerdeman, and A. J. Van Bommel, Nature 168, 271 (1951).
http://dx.doi.org/10.1038/168271a0
2.
2.H. D. Flack and G. Bernardinelli, Chirality 20, 681 (2008).
http://dx.doi.org/10.1002/chir.20473
3.
3.D. Patterson, M. Schnell, and J. M. Doyle, Nature 497, 475 (2013).
http://dx.doi.org/10.1038/nature12150
4.
4.V. A. Shubert, D. Schmitz, D. Patterson, J. M. Doyle, and M. Schnell, Angew. Chem., Int. Ed. 53, 1152 (2014).
http://dx.doi.org/10.1002/anie.201306271
5.
5.P. Herwig, K. Zawatzky, M. Grieser, O. Heber, B. Jordon-Thaden, C. Krantz, O. Novotny, R. Repnow, V. Schurig, D. Schwalm, Z. Vager, A. Wolf, O. Trapp, and H. Kreckel, Science 342, 1084 (2013).
http://dx.doi.org/10.1126/science.1246549
6.
6.M. Pitzer, M. Kunitski, A. S. Johnson, T. Jahnke, H. Sann, F. Sturm, L. P. H. Schmidt, H. Schmidt-Böcking, R. Dörner, J. Stohner, J. Kiedrowski, M. Reggelin, S. Marquardt, A. Schießer, R. Berger, and M. S. Schöffler, Science 341, 1096 (2013).
http://dx.doi.org/10.1126/science.1240362
7.
7.K. Zawatzky, P. Herwig, M. Grieser, O. Heber, B. Jordon-Thaden, C. Krantz, O. Novotny, R. Repnow, V. Schurig, D. Schwalm, Z. Vager, A. Wolf, H. Kreckel, and O. Trapp, Chem.–Eur. J. 20, 5555 (2014).
http://dx.doi.org/10.1002/chem.201400296
8.
8.L. A. Nafie, T. A. Keiderling, and P. J. Stephens, J. Am. Chem. Soc. 98, 2715 (1976).
http://dx.doi.org/10.1021/ja00426a007
9.
9.R. A. G. D. Silva, J. Kubelka, P. Bour, S. M. Decatur, and T. A. Keiderling, Proc. Natl. Acad. Sci. U. S. A. 97, 8318 (2000).
http://dx.doi.org/10.1073/pnas.140161997
10.
10.T. B. Freedman, X. Cao, R. K. Dukor, and L. A. Nafie, Chirality 15, 743 (2003).
http://dx.doi.org/10.1002/chir.10287
11.
11.D. Kurouski, R. A. Lombardi, R. K. Dukor, I. Lednev, and L. A. Nafie, Chem. Commun. 46, 7154 (2010).
http://dx.doi.org/10.1039/c0cc02423f
12.
12.H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, Nature 458, 310 (2009).
http://dx.doi.org/10.1038/nature07846
13.
13.S. R. Domingos, A. Huerta-Viga, L. Baij, S. Amirjalayer, D. A. E. Dunnebier, A. J. C. Walters, M. Finger, L. A. Nafie, B. de Bruin, W. J. Buma, and S. Woutersen, J. Am. Chem. Soc. 136, 3530 (2014).
http://dx.doi.org/10.1021/ja411405s
14.
14.S. R. Domingos, H. J. Sanders, F. Hartl, W. J. Buma, and S. Woutersen, Angew. Chem., Int. Ed. 53, 14042 (2014).
http://dx.doi.org/10.1002/anie.201407376
15.
15.M. A. Belkin, S. H. Han, X. Wei, and Y. R. Shen, Phys. Rev. Lett. 87, 113001 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.113001
16.
16.M. A. Belkin, T. A. Kulakov, K.-H. Ernst, L. Yan, and Y. R. Shen, Phys. Rev. Lett. 85, 4474 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.4474
17.
17.M. A. Belkin and Y. R. Shen, Phys. Rev. Lett. 91, 213907 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.213907
18.
18.M. Oh-e, H. Yokoyama, S. Yorozuya, K. Akagi, M. A. Belkin, and Y. R. Shen, Phys. Rev. Lett. 93, 267402 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.267402
19.
19.J. Wang, X. Chen, M. L. Clarke, and Z. Chen, Proc. Natl. Acad. Sci. U. S. A. 102, 4978 (2005).
http://dx.doi.org/10.1073/pnas.0501206102
20.
20.N. Ji, V. Ostroverkhov, M. Belkin, Y.-J. Shiu, and Y.-R. Shen, J. Am. Chem. Soc. 128, 8845 (2006).
http://dx.doi.org/10.1021/ja060888c
21.
21.L. Fu, G. Ma, and E. C. Y. Yan, J. Am. Chem. Soc. 132, 5405 (2010).
http://dx.doi.org/10.1021/ja909546b
22.
22.L. Fu, J. Liu, and E. C. Y. Yan, J. Am. Chem. Soc. 133, 8094 (2011).
http://dx.doi.org/10.1021/ja201575e
23.
23.L. Fu, D. Xiao, Z. Wang, V. S. Batista, and E. Y. Yan, J. Am. Chem. Soc. 135, 3592 (2013).
http://dx.doi.org/10.1021/ja3119527
24.
24.M. Okuno and T.-a. Ishibashi, J. Phys. Chem. Lett. 5, 2874 (2014).
http://dx.doi.org/10.1021/jz501158r
25.
25.M. Okuno and T.-a. Ishibashi, Anal. Chem. 87, 10103 (2015).
http://dx.doi.org/10.1021/acs.analchem.5b02787
26.
26.F. Sicheri and D. S. C. Yang, Nature 375, 427 (1995).
http://dx.doi.org/10.1038/375427a0
27.
27.J. A. Giordmaine, Phys. Rev. 138, A1599 (1965).
http://dx.doi.org/10.1103/PhysRev.138.A1599
28.
28.X. D. Zhu, H. Suhr, and Y. R. Shen, Phys. Rev. B 35, 3047 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.3047
29.
29.M. Okuno and T.-a. Ishibashi, J. Phys. Chem. C 119, 9947 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b01937
30.
30.M. M. Harding, L. G. Ward, and A. D. J. Haymet, Eur. J. Biochem. 264, 653 (1999).
http://dx.doi.org/10.1046/j.1432-1327.1999.00617.x
31.
31.G. L. Fletcher, C. L. Hew, and P. L. Davies, Annu. Rev. Physiol. 63, 359 (2001).
http://dx.doi.org/10.1146/annurev.physiol.63.1.359
32.
32.See supplementary material at http://dx.doi.org/10.1063/1.4936403 for a description of the synthesis of (L)- and (D)-AFP1, characterization of the products via mass spectrometry and temperature-dependent UV-CD-spectroscopy, and a detailed description of the determination fo the phase of ESFG.[Supplementary Material]
33.
33.X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, Phys. Rev. B 59, 12632 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.12632
34.
34.R. E. Pool, J. Versluis, E. H. G. Backus, and M. Bonn, J. Phys. Chem. B 115, 15362 (2011).
http://dx.doi.org/10.1021/jp2079023
35.
35.N. Bloembergen and P. S. Pershan, Phys. Rev. 128, 606 (1962).
http://dx.doi.org/10.1103/PhysRev.128.606
36.
36.K. Kemnitz, K. Bhattacharyya, J. Hicks, G. Pinto, B. Eisenthal, and T. Heinz, Chem. Phys. Lett. 131, 285 (1986).
http://dx.doi.org/10.1016/0009-2614(86)87152-4
37.
37.D. Xiao, L. Fu, J. Liu, V. S. Batista, and E. C. Yan, J. Mol. Biol. 421, 537 (2012).
http://dx.doi.org/10.1016/j.jmb.2011.12.035
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/20/10.1063/1.4936403
Loading
/content/aip/journal/jcp/143/20/10.1063/1.4936403
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/20/10.1063/1.4936403
2015-11-24
2016-09-29

Abstract

We demonstrate that the enantiomers of chiralmacromolecules at an aqueous interface can be distinguished with monolayer sensitivity using heterodyne-detected vibrational sum-frequency generation (VSFG). We perform VSFG spectroscopy with a polarization combination that selectively probes chiral molecular structures. By using frequencies far detuned from electronic resonances, we probe the chiral macromolecular structures with high surface specificity. The phase of the sum-frequency light generated by the chiral molecules is determined using heterodyne detection. With this approach, we can distinguish right-handed and left-handed helical peptides at a water-air interface. We thus show that heterodyne-detected VSFG is sensitive to the absolute configuration of complex, interfacial macromolecules and has the potential to determine the absolute configuration of enantiomers at interfaces.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/20/1.4936403.html;jsessionid=CFuzIs7tEBGQJJKazl-i0U-O.x-aip-live-02?itemId=/content/aip/journal/jcp/143/20/10.1063/1.4936403&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/20/10.1063/1.4936403&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/20/10.1063/1.4936403'
Right1,Right2,Right3,