Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. M. Bijvoet, A. F. Peerdeman, and A. J. Van Bommel, Nature 168, 271 (1951).
2.H. D. Flack and G. Bernardinelli, Chirality 20, 681 (2008).
3.D. Patterson, M. Schnell, and J. M. Doyle, Nature 497, 475 (2013).
4.V. A. Shubert, D. Schmitz, D. Patterson, J. M. Doyle, and M. Schnell, Angew. Chem., Int. Ed. 53, 1152 (2014).
5.P. Herwig, K. Zawatzky, M. Grieser, O. Heber, B. Jordon-Thaden, C. Krantz, O. Novotny, R. Repnow, V. Schurig, D. Schwalm, Z. Vager, A. Wolf, O. Trapp, and H. Kreckel, Science 342, 1084 (2013).
6.M. Pitzer, M. Kunitski, A. S. Johnson, T. Jahnke, H. Sann, F. Sturm, L. P. H. Schmidt, H. Schmidt-Böcking, R. Dörner, J. Stohner, J. Kiedrowski, M. Reggelin, S. Marquardt, A. Schießer, R. Berger, and M. S. Schöffler, Science 341, 1096 (2013).
7.K. Zawatzky, P. Herwig, M. Grieser, O. Heber, B. Jordon-Thaden, C. Krantz, O. Novotny, R. Repnow, V. Schurig, D. Schwalm, Z. Vager, A. Wolf, H. Kreckel, and O. Trapp, Chem.–Eur. J. 20, 5555 (2014).
8.L. A. Nafie, T. A. Keiderling, and P. J. Stephens, J. Am. Chem. Soc. 98, 2715 (1976).
9.R. A. G. D. Silva, J. Kubelka, P. Bour, S. M. Decatur, and T. A. Keiderling, Proc. Natl. Acad. Sci. U. S. A. 97, 8318 (2000).
10.T. B. Freedman, X. Cao, R. K. Dukor, and L. A. Nafie, Chirality 15, 743 (2003).
11.D. Kurouski, R. A. Lombardi, R. K. Dukor, I. Lednev, and L. A. Nafie, Chem. Commun. 46, 7154 (2010).
12.H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, Nature 458, 310 (2009).
13.S. R. Domingos, A. Huerta-Viga, L. Baij, S. Amirjalayer, D. A. E. Dunnebier, A. J. C. Walters, M. Finger, L. A. Nafie, B. de Bruin, W. J. Buma, and S. Woutersen, J. Am. Chem. Soc. 136, 3530 (2014).
14.S. R. Domingos, H. J. Sanders, F. Hartl, W. J. Buma, and S. Woutersen, Angew. Chem., Int. Ed. 53, 14042 (2014).
15.M. A. Belkin, S. H. Han, X. Wei, and Y. R. Shen, Phys. Rev. Lett. 87, 113001 (2001).
16.M. A. Belkin, T. A. Kulakov, K.-H. Ernst, L. Yan, and Y. R. Shen, Phys. Rev. Lett. 85, 4474 (2000).
17.M. A. Belkin and Y. R. Shen, Phys. Rev. Lett. 91, 213907 (2003).
18.M. Oh-e, H. Yokoyama, S. Yorozuya, K. Akagi, M. A. Belkin, and Y. R. Shen, Phys. Rev. Lett. 93, 267402 (2004).
19.J. Wang, X. Chen, M. L. Clarke, and Z. Chen, Proc. Natl. Acad. Sci. U. S. A. 102, 4978 (2005).
20.N. Ji, V. Ostroverkhov, M. Belkin, Y.-J. Shiu, and Y.-R. Shen, J. Am. Chem. Soc. 128, 8845 (2006).
21.L. Fu, G. Ma, and E. C. Y. Yan, J. Am. Chem. Soc. 132, 5405 (2010).
22.L. Fu, J. Liu, and E. C. Y. Yan, J. Am. Chem. Soc. 133, 8094 (2011).
23.L. Fu, D. Xiao, Z. Wang, V. S. Batista, and E. Y. Yan, J. Am. Chem. Soc. 135, 3592 (2013).
24.M. Okuno and T.-a. Ishibashi, J. Phys. Chem. Lett. 5, 2874 (2014).
25.M. Okuno and T.-a. Ishibashi, Anal. Chem. 87, 10103 (2015).
26.F. Sicheri and D. S. C. Yang, Nature 375, 427 (1995).
27.J. A. Giordmaine, Phys. Rev. 138, A1599 (1965).
28.X. D. Zhu, H. Suhr, and Y. R. Shen, Phys. Rev. B 35, 3047 (1987).
29.M. Okuno and T.-a. Ishibashi, J. Phys. Chem. C 119, 9947 (2015).
30.M. M. Harding, L. G. Ward, and A. D. J. Haymet, Eur. J. Biochem. 264, 653 (1999).
31.G. L. Fletcher, C. L. Hew, and P. L. Davies, Annu. Rev. Physiol. 63, 359 (2001).
32.See supplementary material at for a description of the synthesis of (L)- and (D)-AFP1, characterization of the products via mass spectrometry and temperature-dependent UV-CD-spectroscopy, and a detailed description of the determination fo the phase of ESFG.[Supplementary Material]
33.X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, Phys. Rev. B 59, 12632 (1999).
34.R. E. Pool, J. Versluis, E. H. G. Backus, and M. Bonn, J. Phys. Chem. B 115, 15362 (2011).
35.N. Bloembergen and P. S. Pershan, Phys. Rev. 128, 606 (1962).
36.K. Kemnitz, K. Bhattacharyya, J. Hicks, G. Pinto, B. Eisenthal, and T. Heinz, Chem. Phys. Lett. 131, 285 (1986).
37.D. Xiao, L. Fu, J. Liu, V. S. Batista, and E. C. Yan, J. Mol. Biol. 421, 537 (2012).

Data & Media loading...


Article metrics loading...



We demonstrate that the enantiomers of chiralmacromolecules at an aqueous interface can be distinguished with monolayer sensitivity using heterodyne-detected vibrational sum-frequency generation (VSFG). We perform VSFG spectroscopy with a polarization combination that selectively probes chiral molecular structures. By using frequencies far detuned from electronic resonances, we probe the chiral macromolecular structures with high surface specificity. The phase of the sum-frequency light generated by the chiral molecules is determined using heterodyne detection. With this approach, we can distinguish right-handed and left-handed helical peptides at a water-air interface. We thus show that heterodyne-detected VSFG is sensitive to the absolute configuration of complex, interfacial macromolecules and has the potential to determine the absolute configuration of enantiomers at interfaces.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd