Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, Nat. Nanotechnol. 7, 11 (2012).
2.S. Turner, O. I. Lebedev, O. Shenderova, I. I. Vlasov, J. Verbeeck, and G. Van Tendeloo, Adv. Funct. Mater. 19, 2116 (2009).
3.O. V. Tornchuk, D. S. Volkov, L. A. Bulavin, A. V. Rogachev, M. A. Proskurnin, M. V. Korobov, and M. V. Avdeev, J. Phys. Chem. C 119, 794 (2015).
4.A. Krueger and D. Lang, Adv. Funct. Mater. 22, 890 (2012).
5.J. Zhang, D. S. Su, R. Blume, R. Schlogl, R. Wang, X. G. Yang, and A. Gajovic, Angew. Chem., Int. Ed. 49, 8640 (2010).
6.L. P. McGuinness, Y. Yan, A. Stacey, D. A. Simpson, L. T. Hall, D. Maclaurin, S. Prawer, P. Mulvaney, J. Wrachtrup, F. Caruso, R. E. Scholten, and L. C. L. Hollenberg, Nat. Nanotechnol. 6, 358 (2011).
7.M. Bevilacqua, S. Patel, A. Chaudhary, H. T. Ye, and R. B. Jackman, Appl. Phys. Lett. 93, 132115 (2008).
8.A. Chaudhary, J. O. Welch, and R. B. Jackman, Appl. Phys. Lett. 96, 242903 (2010).
9.T. Sasagawa and Z. X. Shen, J. Appl. Phys. 104, 073704 (2008).
10.A. A. Fokin and P. R. Schreiner, Mol. Phys. 107, 823 (2009).
11.A. Bolker, C. Saguy, M. Tordjman, and R. Kalish, Phys. Rev. B 88, 035442 (2013).
12.G. F. Reiter, A. Deb, Y. Sakurai, M. Itou, V. G. Krishnan, and S. J. Paddison, Phys. Rev. Lett. 111, 036803 (2013).
13.J. Koskelo, I. Juurinen, K. O. Ruotsalainen, M. J. McGrath, I. F. Kuo, S. Lehtola, S. Galambosi, K. Hamalainen, S. Huotari, and M. Hakala, J. Chem. Phys. 141, 244505 (2014).
14.J. T. Okada, P. H. L. Sit, Y. Watanabe, Y. J. Wang, B. Barbiellini, T. Ishikawa, M. Itou, Y. Sakurai, A. Bansil, R. Ishikawa, M. Hamaishi, T. Masaki, P. F. Paradis, K. Kimura, T. Ishikawa, and S. Nanao, Phys. Rev. Lett. 108, 067402 (2012).
15.J. T. Okada, P. H. L. Sit, Y. Watanabe, B. Barbiellini, T. Ishikawa, Y. J. Wang, M. Itou, Y. Sakurai, A. Bansil, R. Ishikawa, M. Hamaishi, P. F. Paradis, K. Kimura, T. Ishikawa, and S. Nanao, Phys. Rev. Lett. 114, 177401 (2015).
16.M. Hakala, K. Nygard, J. Vaara, M. Itou, Y. Sakurai, and K. Hamalainen, J. Chem. Phys. 130, 034506 (2009).
17.Z. B. Feng, S. Loffler, F. Eder, D. S. Su, J. C. Meyer, and P. Schattschneider, J. Appl. Phys. 114, 183716 (2013).
18.R. F. Egerton, Rep. Prog. Phys. 72, 016502 (2009).
19.R. F. Egerton, Electron Energy-Loss Spectroscopy in Electron Microscope (Springer, New York, 2011).
20.B. G. Williams, T. G. Sparrow, and R. F. Egerton, Proc. R. Soc. A 393, 409 (1984).
21.P. Jonas and P. Schattschneider, J. Phys.: Condens. Matter 5, 7173 (1993).
22.B. G. Williams, G. M. Parkinson, C. J. Eckhardt, J. M. Thomas, and T. Sparrow, Chem. Phys. Lett. 78, 434 (1981).
23.P. Schattschneider and A. Exner, Ultramicroscopy 59, 241 (1995).
24.P. Eisenberger and P. M. Platzman, Phys. Rev. A 2, 415 (1970).
25.X-Ray Compton Scattering, edited by M. Cooper, P. Mijnarends, N. Shiotani, and A. Bansil (Oxford University Press, Oxford, 2004).
26.J. Y. Raty and G. Galli, Comput. Phys. Commun. 169, 14 (2005).
27.J. Jiang, L. A. Sun, B. Gao, Z. Y. Wu, W. Lu, J. L. Yang, and Y. Luo, J. Appl. Phys. 108, 094303 (2010).
28.B. Wen, J. Zhao, and T. Li, Chem. Phys. Lett. 441, 318 (2007).
29.J. C. Meyer, F. Eder, S. Kurasch, V. Skakalova, J. Kotakoski, H. J. Park, S. Roth, A. Chuvilin, S. Eyhusen, G. Benner, A. V. Krasheninnikov, and U. Kaiser, Phys. Rev. Lett. 108, 196102 (2012).
30.P. Jonas, Ph.D. thesis, Vienna University of Technology, 1993.
31.P. E. Mijnarends and A. Bansil, “Scattering techniques, Compton,” in Encyclopedia of Condensed Matter Physics, edited by G. F. Bassani, G. L. Liedl, and P. Wyder (Elsevier, Amsterdam, Boston, 2005).
32.D. S. Su, P. Jonas, and P. Schattschneider, Philos. Mag. B 66, 405 (1992).
33.D. S. Su and E. Zeitler, Phys. Rev. B 47, 14734 (1993).
34.S. T. Manson, Phys. Rev. A 6, 1013 (1972).
35.R. D. Leapman, P. Rez, and D. F. Mayers, J. Chem. Phys. 72, 1232 (1980).
36.Z. B. Feng, Ph.D. thesis, Vienna University of Technology, 2013.
37.B. G. Williams and J. M. Thomas, Int. Rev. Phys. Chem. 3, 39 (1983).
38.W. A. Reed and P. Eisenber, Phys. Rev. B 6, 4596 (1972).
39.D. Ayma, M. Rerat, R. Orlando, and A. Lichanot, Acta Crystallogr., Sect. A: Found. Crystallogr. 54, 1019 (1998).
40.T. Ikeda, K. Teii, C. Casiraghi, J. Robertson, and A. C. Ferrari, J. Appl. Phys. 104, 073720 (2008).

Data & Media loading...


Article metrics loading...



The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd