Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.T. Förster, Discuss. Faraday Soc. 27, 7 (1959).
2.G. D. Scholes, Annu. Rev. Phys. Chem. 54, 57 (2003).
3.V. M. Agranovich, G. C. La Rocca, and F. Bassani, JETP Lett. 66, 748 (1997).
4.D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, Eur. Phys. J. B 8, 353 (1999).
5.V. M. Agranovich, D. M. Basko, G. C. La Rocca, and F. Bassani, Synth. Met. 116, 349 (2001).
6.M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, Nature 429, 642 (2004).
7.G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, Adv. Mater. 18, 334 (2006).
8.S. Blumstengel, S. Sadofev, C. Xu, J. Puls, and F. Henneberger, Phys. Rev. Lett. 97, 237401 (2006).
9.S. Blumstengel, S. Sadofev, and F. Henneberger, New J. Phys. 10, 065010 (2008).
10.A. A. R. Neves, A. Camposeo, R. Cingolani, and D. Pisignano, Adv. Funct. Mater. 18, 751 (2008).
11.Q. Zhang, T. Atay, J. R. Tischler, M. S. Bradley, V. Bulovic, and A. V. Nurmikko, Nat. Nanotechnol. 2, 555 (2007).
12.S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, Phys. Rev. B 77, 193402 (2008).
13.G. W. Shu, C. C. Lin, H. T. Lin, T. N. Lin, J. L. Shen, C. H. Chiu, Z. Y. Li, H. C. Kuo, C. C. Lin, S. C. Wang, C. A. J. Lin, and W. H. Chang, Opt. Express 19, A194 (2011).
14.Z. Chen, S. Berciaud, C. Nuckolls, T. F. Heinz, and L. E. Brus, ACS Nano 4, 2964 (2010).
15.F. Federspiel, G. Froehlicher, M. Nasilowski, S. Pedetti, A. Mahmood, B. Doudin, S. Park, J.-O. Lee, D. Halley, B. Dubertret, P. Gilliot, and S. Berciaud, Nano Lett. 15, 1252 (2015).
16.M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, Nano Lett. 6, 1396 (2006).
17.C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, J. Phys. D: Appl. Phys. 41, 094006 (2008).
18.G. Itskos, C. R. Belton, G. Heliotis, I. M. Watson, M. D. Dawson, R. Murray, and D. D. C. Bradley, Nanotechnology 20, 275207 (2009).
19.S. Nizamoglu, E. Sari, J.-H. Baek, I.-H. Lee, and H. V. Demir, New J. Phys. 10, 123001 (2008).
20.S. Nizamoglu, E. Sari, I.-H. Lee, J.-H. Baek, and H. V. Demir, IEEE J. Sel. Top. Quantum Electron. 15, 1163 (2009).
21.D. L. Dexter, J. Lumin. 18-19, 779 (1979).
22.D. M. Basko, G. L. La Rocca, F. Bassani, and V. M. Agranovich, Phys. Rev. B 71, 165330 (2005).
23.V. M. Agranovich, V. I. Rupasov, and L. Silvestri, Phys. Status Solidi C 7, 1684 (2010).
24.S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, Phys. Rev. Lett. 102, 077402 (2009).
25.S. Nizamoglu, B. Guzelturk, D.-W. Jeon, I.-H. Lee, and H. V. Demir, Appl. Phys. Lett. 98, 163108 (2011).
26.R. Smith, B. Liu, J. Bai, and T. Wang, Nano Lett. 13, 3042 (2013).
27.V. M. Agranovich, Y. N. Gartstein, and M. Litinskaya, Chem. Rev. 111, 5179 (2011).
28.P. L. Hernández-Martínez, A. O. Govorov, and H. V. Demir, J. Phys. Chem. C 117, 10203 (2013).
29.G. Itskos, G. Heliotis, P. G. Lagoudakis, J. Lupton, N. P. Barradas, E. Alves, S. Pereira, I. M. Watson, M. D. Dawson, J. Feldmann, R. Murray, and D. D. C. Bradley, Phys. Rev. B 76, 035344 (2007).
30.Y. Gladush, C. Piermarocchi, and V. Agranovich, Phys. Rev. B 84, 205312 (2011).
31.Š. Kos, M. Achermann, V. I. Klimov, and D. L. Smith, Phys. Rev. B 71, 205309 (2005).
32.S. Rohrmoser, J. Baldauf, R. T. Harley, P. G. Lagoudakis, S. Sapra, A. Eychmuller, and I. M. Watson, Appl. Phys. Lett. 91, 092126 (2007).
33.J. J. Rindermann, G. Pozina, B. Monemar, L. Hultman, H. Amano, and P. G. Lagoudakis, Phys. Rev. Lett. 107, 236805 (2011).
34.S. Kawka and G. C. La Rocca, Phys. Rev. B 85, 115305 (2012).
35.G. Heliotis, E. Gu, C. Griffin, C. W. Jeon, P. N. Stavrinou, M. D. Dawson, and D. D. C. Bradley, J. Opt. A 8, S445 (2006).
36.M. Wu, Z. Gong, A. J. C. Kuehne, A. L. Kanibolotsky, Y. J. Chen, I. F. Perepichka, A. R. Mackintosh, E. Gu1, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, Opt. Express 17, 16436 (2009).
37.M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C. C. Cheng, A. Scherer, R. Bhat, and M. Krames, J. Appl. Phys. 87, 3497 (2000).
38.A. Othonos, G. Itskos, D. D. C. Bradley, M. D. Dawson, and I. M. Watson, Appl. Phys. Lett. 94, 203102 (2009).
39.O. Kopylov, R. Shirazi, O. Svensk, S. Suihkonen, S. Sintonen, M. Sopanen, and B. E. Kardynał, Phys. Status Solidi C 9, 727 (2012).
40.O. Svensk, S. Suihkonen, S. Sintonen, O. Kopylov, R. Shirazi, H. Lipsanen, M. Sopanen, and B. E. Kardynal, Phys. Status Solidi C 9, 1667 (2012).
41.G. Itskos, X. Xristodoulou, E. Iliopoulos, S. Ladas, S. Kennou, M. Neophytou, and S. Choulis, Appl. Phys. Lett. 102, 063303 (2013).
42.O. Kopylov, A. Huck, S. Kadkhodazadeh, K. Yvind, and B. Kardynal, J. Phys. Chem. C 118, 16284 (2014).
43.O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, J. Phys.: Condens. Matter 14, 3399 (2002).
44.S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information (Springer Science and Business Media, NY, 1999).
45.F. Bianchi, S. Sadofev, R. Schlesinger, B. Kobin, S. Hecht, N. Koch, F. Henneberger, and S. Blumstengel, Appl. Phys. Lett. 105, 233301 (2014).
46.IUPAC, in Compendium of Chemical Terminology (The “Gold Book”), 2nd ed., compiled by A. D. McNaught A. Wilkinson (Blackwell Scientific Publications, Oxford, UK, 1997).
47.S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, Adv. Mater. 22, 602 (2010).
48.R. Schlesinger, F. Bianchi, S. Blumstengel, C. Christodoulou, R. Ovsyannikov, B. Kobin, K. Moudgil, S. Barlow, S. Hecht, S. R. Marder, F. Henneberger, and N. Koch, Nat. Commun. 6, 6754 (2015).

Data & Media loading...


Article metrics loading...



A systematic investigation of Förster resonant energy transfer (FRET) is reported within a hybrid prototype structure based on nitride single quantum well(SQW) donors and light emitting polymer acceptors. Self-consistent Schrödinger-Poisson modeling and steady-state and time-resolved photoluminescence experiments were initially employed to investigate the influence of a wide structural parameter space on the emission quantum yield of the nitride component. The optimized SQW heterostructures were processed into hybrid structures with spin-casted overlayers of polyfluorenes. The influence of important unexplored aspects of the inorganic heterostructure such as SQW confinement, content, and doping on the dipole-dipole coupling was probed. Competing mechanisms to the FRET process associated with interfacial recombination and charge transfer have been studied and their implications to device applications exploiting FRET across heterointerfaces have been discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd