Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/21/10.1063/1.4936394
1.
1.N. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd ed. (Elsevier, Amsterdam, 2007).
2.
2.R. Grima, D. Schmidt, and T. Newman, J. Chem. Phys. 137, 035104 (2012).
http://dx.doi.org/10.1063/1.4736721
3.
3.V. Shahrezaei and P. S. Swain, Proc. Natl. Acad. Sci. 105, 17256 (2008).
http://dx.doi.org/10.1073/pnas.0803850105
4.
4.S. Smith and V. Shahrezaei, Phys. Rev. E 91, 062119 (2015).
http://dx.doi.org/10.1103/PhysRevE.91.062119
5.
5.T. Jahnke and W. Huisinga, J. Math. Biol. 54, 1 (2007).
http://dx.doi.org/10.1007/s00285-006-0034-x
6.
6.D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
http://dx.doi.org/10.1021/j100540a008
7.
7.E. L. Haseltine and J. B. Rawlings, J. Chem. Phys. 117, 6959 (2002).
http://dx.doi.org/10.1063/1.1505860
8.
8.K. Takahashi, H. Kaizu, B. Hu, and M. Tomita, Bioinformatics 20, 538 (2004).
http://dx.doi.org/10.1093/bioinformatics/btg442
9.
9.H. Salis and Y. Kaznessis, J. Chem. Phys. 122, 054103 (2005).
http://dx.doi.org/10.1063/1.1835951
10.
10.E. Weinan, D. Liu, and E. Vanden-Eijnden, J. Chem. Phys. 123, 194107 (2005).
http://dx.doi.org/10.1063/1.2109987
11.
11.R. Erban, I. G. Kevrekidis, D. Adalsteinsson, and T. C. Elston, J. Chem. Phys. 124, 084106 (2006).
http://dx.doi.org/10.1063/1.2149854
12.
12.S. L. Cotter, K. C. Zygalakis, I. G. Kevrekidis, and R. Erban, J. Chem. Phys. 135, 094102 (2011).
http://dx.doi.org/10.1063/1.3624333
13.
13.S. Cotter, “Constrained approximation of effective generators for multiscale stochastic reaction networks and application to conditioned path sampling,” e-print arXiv:1506.02446 (unpublished).
14.
14.S. Peleš, B. Munsky, and M. Khammash, J. Chem. Phys. 125, 204104 (2006).
http://dx.doi.org/10.1063/1.2397685
15.
15.B. Munsky and M. Khammash, J. Chem. Phys. 124, 044104 (2006).
http://dx.doi.org/10.1063/1.2145882
16.
16.Y. Cao, D. T. Gillespie, and L. R. Petzold, J. Chem. Phys. 122, 014116 (2005).
http://dx.doi.org/10.1063/1.1824902
17.
17.P. Thomas, A. V. Straube, and R. Grima, BMC Syst. Biol. 6, 39 (2012).
http://dx.doi.org/10.1186/1752-0509-6-39
18.
18.P. Thomas, R. Grima, and A. V. Straube, Phys. Rev. E 86, 041110 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.041110
19.
19.A. Hellander and P. Lötstedt, J. Comput. Phys. 227, 100 (2007).
http://dx.doi.org/10.1016/j.jcp.2007.07.020
20.
20.A. Alfonsi, E. Cancès, G. Turinici, B. Di Ventura, and W. Huisinga, in ESAIM: Proceedings (EDP Sciences, 2005), Vol. 14, pp. 113.
21.
21.T. Jahnke, SIAM Multiscale Model. Simul. 9, 1646 (2011).
http://dx.doi.org/10.1137/110821500
22.
22.T. Jahnke and M. Kreim, SIAM Multiscale Model. Simul. 10, 1119 (2012).
http://dx.doi.org/10.1137/120871894
23.
23.Y. Taniguchi, P. J. Choi, G.-W. Li, H. Chen, M. Babu, J. Hearn, A. Emili, and X. S. Xie, Science 329, 533 (2010).
http://dx.doi.org/10.1126/science.1188308
24.
24.B. Schwanhausser, D. Busse, N. Li, G. Dittmar, J. Schuchhardt, J. Wolf, W. Chen, and M. Selbach, Nature 473, 337 (2011).
http://dx.doi.org/10.1038/nature10098
25.
25.C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory (Springer, Berlin, 2010).
26.
26.R. Grima, J. Chem. Phys. 133, 035101 (2010).
http://dx.doi.org/10.1063/1.3454685
27.
27.R. Ramaswamy, N. Gonzalez-Segredo, I. F. Sbalzarini, and R. Grima, Nat. Commun. 3, 779 (2012).
http://dx.doi.org/10.1038/ncomms1775
28.
28.D. Gillespie, J. Chem. Phys. 113, 297 (2000).
http://dx.doi.org/10.1063/1.481811
29.
29.M. Voliotis, P. Thomas, R. Grima, and C. Bowsher, “Stochastic simulation of biomolecular networks in dynamic environments,” preprint arXiv:1511.01268v1 (unpublished).
30.
30.D. F. Anderson, J. Chem. Phys. 127, 214107 (2007).
http://dx.doi.org/10.1063/1.2799998
31.
31.D. P. Tschudy and H. L. Bonkowsky, Mol. Cell. Biochem. 2, 55 (1973).
http://dx.doi.org/10.1007/BF01738678
32.
32.P. Thomas, A. V. Straube, and R. Grima, J. Chem. Phys. 133, 195101 (2010).
http://dx.doi.org/10.1063/1.3505552
33.
33.D. Gonze, J. Halloy, and A. Goldbeter, Proc. Natl. Acad. Sci. 99, 673 (2002).
http://dx.doi.org/10.1073/pnas.022628299
34.
34.P. Thomas, A. V. Straube, J. Timmer, C. Fleck, and R. Grima, J. Theor. Biol. 335, 222 (2013).
http://dx.doi.org/10.1016/j.jtbi.2013.06.021
35.
35.N. van Kampen, Phys. Lett. A 5, 333 (1976).
http://dx.doi.org/10.1016/0375-9601(76)90398-4
36.
36.D. Schnoerr, G. Sanguinetti, and R. Grima, J. Chem. Phys. 141, 024103 (2014).
http://dx.doi.org/10.1063/1.4885345
37.
37.J. Elf and M. Ehrenberg, Genome Res. 13, 2475 (2003).
http://dx.doi.org/10.1101/gr.1196503
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/21/10.1063/1.4936394
Loading
/content/aip/journal/jcp/143/21/10.1063/1.4936394
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/21/10.1063/1.4936394
2015-12-01
2016-09-26

Abstract

Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/21/1.4936394.html;jsessionid=M3qHZL_1gLMva-0j5xDOqKeN.x-aip-live-02?itemId=/content/aip/journal/jcp/143/21/10.1063/1.4936394&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/21/10.1063/1.4936394&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/21/10.1063/1.4936394'
Right1,Right2,Right3,