Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/21/10.1063/1.4936654
1.
1.F. N. Keutsch and R. J. Saykally, Proc. Natl. Acad. Sci. U. S. A. 98, 10533 (2001).
http://dx.doi.org/10.1073/pnas.191266498
2.
2.M. D. Fayer and N. E. Levinger, Annu. Rev. Anal. Chem. 3, 89 (2010).
http://dx.doi.org/10.1146/annurev-anchem-070109-103410
3.
3.A. M. Jubb, W. Hua, and H. C. Allen, Annu. Rev. Phys. Chem. 63, 107 (2012).
http://dx.doi.org/10.1146/annurev-physchem-032511-143811
4.
4.S. Bourrelly, B. Moulin, A. Rivera, G. Maurin, S. Devautour-Vinot, C. Serre, T. Devic, P. Horcajada, A. Vimont, G. Clet, M. Daturi, J.-C. Lavalley, S. Loera-Serna, R. Denoyel, P. L. Llewellyn, and G. Férey, J. Am. Chem. Soc. 132, 9488 (2010).
http://dx.doi.org/10.1021/ja1023282
5.
5.S. Horvath, A. B. McCoy, B. M. Elliott, G. H. Weddle, J. R. Roscioli, and M. A. Johnson, J. Phys. Chem. A 114, 1556 (2010).
http://dx.doi.org/10.1021/jp9088782
6.
6.F. Perakis, J. A. Borek, and P. Hamm, J. Chem. Phys. 139, 014501 (2013).
http://dx.doi.org/10.1063/1.4812216
7.
7.G. R. Medders and F. Paesani, J. Phys. Chem. Lett. 5, 2897 (2014).
http://dx.doi.org/10.1021/jz5013998
8.
8.S. Nihonyanagi, T. Ishiyama, T. Lee, S. Yamaguchi, M. Bonn, A. Morita, and T. Tahara, J. Am. Chem. Soc. 133, 16875 (2011).
http://dx.doi.org/10.1021/ja2053754
9.
9.L. Piatkowski, Z. Zhang, E. H. G. Backus, H. J. Bakker, and M. Bonn, Nat. Commun. 5, 4083 (2014).
http://dx.doi.org/10.1038/ncomms5083
10.
10.Y. Maréchal, The Hydrogen Bond and the Water Molecule: The Physics and Chemistry of Water, Aqueous and Bio-Media (Elsevier, Amsterdam, 2006).
11.
11.A. Millo, Y. Raichlin, and A. Katzir, Appl. Spectrosc. 59, 460 (2005).
http://dx.doi.org/10.1366/0003702053641469
12.
12.W. J. Smit and H. J. Bakker, J. Chem. Phys. 139, 204504 (2013).
http://dx.doi.org/10.1063/1.4833596
13.
13.A. B. McCoy, J. Phys. Chem. B 118, 8286 (2014).
http://dx.doi.org/10.1021/jp501647e
14.
14.Y. R. Shen and V. Ostroverkhov, Chem. Rev. 106, 1140 (2006).
http://dx.doi.org/10.1021/cr040377d
15.
15.J. L. Skinner, P. A. Pieniazek, and S. M. Gruenbaum, Acc. Chem. Res. 45, 93 (2012).
http://dx.doi.org/10.1021/ar200122a
16.
16.I. V. Stiopkin, C. Weeraman, P. A. Pieniazek, F. Y. Shalhout, J. L. Skinner, and A. V. Benderskii, Nature 474, 192 (2011).
http://dx.doi.org/10.1038/nature10173
17.
17.M. Vinaykin and A. V. Benderskii, J. Phys. Chem. Lett. 3, 3348 (2012).
http://dx.doi.org/10.1021/jz3014776
18.
18.Y. Nagata, C.-S. Hsieh, T. Hasegawa, J. Voll, E. H. G. Backus, and M. Bonn, J. Phys. Chem. Lett. 4, 1872 (2013).
http://dx.doi.org/10.1021/jz400683v
19.
19.G. R. Medders, V. Babin, and F. Paesani, J. Chem. Theory Comput. 9, 1103 (2013).
http://dx.doi.org/10.1021/ct300913g
20.
20.S. S. Xantheas, J. Chem. Phys. 102, 4505 (1995).
http://dx.doi.org/10.1063/1.469499
21.
21.E. E. Dahlke and D. G. Truhlar, J. Phys. Chem. B 109, 15677 (2005).
http://dx.doi.org/10.1021/jp052436c
22.
22.B. Santra, A. Michaelides, and M. Scheffler, J. Chem. Phys. 127, 184104 (2007).
http://dx.doi.org/10.1063/1.2790009
23.
23.E. E. Dahlke, R. M. Olson, H. R. Leverentz, and D. G. Truhlar, J. Phys. Chem. A 112, 3976 (2008).
http://dx.doi.org/10.1021/jp077376k
24.
24.B. Santra, A. Michaelides, M. Fuchs, A. Tkatchenko, C. Filippi, and M. Scheffler, J. Chem. Phys. 129, 194111 (2008).
http://dx.doi.org/10.1063/1.3012573
25.
25.G. C. Shields and K. N. Kirschner, Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 38, 32 (2008).
http://dx.doi.org/10.1080/15533170701853918
26.
26.V. S. Bryantsev, M. S. Diallo, A. C. van Duin, and W. A. Goddard III, J. Chem. Theory Comput. 5, 1016 (2009).
http://dx.doi.org/10.1021/ct800549f
27.
27.P. L. Silvestrelli, Chem. Phys. Lett. 475, 285 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.05.049
28.
28.F. Li, L. Wang, J. Zhao, J. R. Xie, K. E. Riley, and Z. Chen, Theor. Chem. Acc. 130, 341 (2011).
http://dx.doi.org/10.1007/s00214-011-0989-6
29.
29.J. A. Plumley and J. Dannenberg, J. Comput. Chem. 32, 1519 (2011).
http://dx.doi.org/10.1002/jcc.21729
30.
30.Y. Wang, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 131, 054511 (2009).
http://dx.doi.org/10.1063/1.3196178
31.
31.Y. Wang, X. Huang, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 134, 94509 (2011).
http://dx.doi.org/10.1063/1.3554905
32.
32.E. Miliordos, E. Aprà, and S. S. Xantheas, J. Chem. Phys. 139, 114302 (2013).
http://dx.doi.org/10.1063/1.4820448
33.
33.J. C. Howard and G. S. Tschumper, J. Chem. Phys. 139, 184113 (2013).
http://dx.doi.org/10.1063/1.4829463
34.
34.J. C. Howard, J. L. Gray, A. J. Hardwick, L. T. Nguyen, and G. S. Tschumper, J. Chem. Theory Comput. 10, 5426 (2014).
http://dx.doi.org/10.1021/ct500860v
35.
35.B. W. Hopkins and G. S. Tschumper, J. Comput. Chem. 24, 1563 (2003).
http://dx.doi.org/10.1002/jcc.10319
36.
36.B. W. Hopkins and G. S. Tschumper, Mol. Phys. 103, 309 (2005).
http://dx.doi.org/10.1080/00268970512331317291
37.
37.G. S. Tschumper, Chem. Phys. Lett. 427, 185 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.06.021
38.
38.A. M. ElSohly, C. L. Shaw, M. E. Guice, B. D. Smith, and G. S. Tschumper, Mol. Phys. 105, 2777 (2007).
http://dx.doi.org/10.1080/00268970701633126
39.
39.D. M. Bates, J. R. Smith, and G. S. Tschumper, J. Chem. Theory Comput. 7, 2753 (2011).
http://dx.doi.org/10.1021/ct200176t
40.
40.D. M. Bates, J. R. Smith, T. Janowski, and G. S. Tschumper, J. Chem. Phys. 135, 044123 (2011).
http://dx.doi.org/10.1063/1.3609922
41.
41.J. C. Howard and G. S. Tschumper, J. Chem. Theory Comput. 11, 2126 (2015), for benchmark values with greater precision, see http://quantum.chem.olemiss.edu/pubs.html.
http://dx.doi.org/10.1021/acs.jctc.5b00225
42.
42.J. C. Howard and G. S. Tschumper, WIREs: Comput. Mol. Sci. 4, 199 (2014).
http://dx.doi.org/10.1002/wcms.1168
43.
43.D. M. Bates and G. S. Tschumper, J. Phys. Chem. A 113, 3555 (2009).
http://dx.doi.org/10.1021/jp8105919
44.
44.C. Pérez, M. Muckle, D. Zaleski, N. Seifert, B. Temelso, G. Shields, Z. Kisiel, and B. Pate, Science 336, 897 (2012).
http://dx.doi.org/10.1126/science.1220574
45.
45.K. Liu, M. Brown, C. Carter, R. Saykally, J. Gregory, and D. Clary, Nature 381, 501 (1996).
http://dx.doi.org/10.1038/381501a0
46.
46.Y. Wang, V. Babin, J. Bowman, and F. Paesani, J. Am. Chem. Soc. 134, 11116 (2012).
http://dx.doi.org/10.1021/ja304528m
47.
47.B. Temelso, K. Archer, and G. Shields, J. Phys. Chem. A 115, 12034 (2011).
http://dx.doi.org/10.1021/jp2069489
48.
48.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2009.
49.
49.T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
50.
50.Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125, 194101 (2006).
http://dx.doi.org/10.1063/1.2370993
51.
51.R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett. 3, 117 (2012).
http://dx.doi.org/10.1021/jz201525m
52.
52.R. Peverati and D. G. Truhlar, J. Chem. Theory Comput. 8, 2310 (2012).
http://dx.doi.org/10.1021/ct3002656
53.
53.R. Peverati and D. G. Truhlar, Phys. Chem. Chem. Phys. 14, 13171 (2012).
http://dx.doi.org/10.1039/c2cp42025b
54.
54.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
55.
55.A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
56.
56.C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
57.
57.B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989).
http://dx.doi.org/10.1016/0009-2614(89)87234-3
58.
58.R. Peverati, Y. Zhao, and D. G. Truhlar, J. Phys. Chem. Lett. 2, 1991 (2011).
http://dx.doi.org/10.1021/jz200616w
59.
59.S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
60.
60.A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
61.
61.X. Xu and W. A. Goddard III, Proc. Natl. Acad. Sci. U. S. A. 101, 2673 (2004).
http://dx.doi.org/10.1073/pnas.0308730100
62.
62.Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).
http://dx.doi.org/10.1007/s00214-007-0310-x
63.
63.C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
http://dx.doi.org/10.1063/1.478522
64.
64.R. Peverati and D. G. Truhlar, J. Chem. Phys. 135, 191102 (2011).
http://dx.doi.org/10.1063/1.3663871
65.
65.J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008).
http://dx.doi.org/10.1063/1.2834918
66.
66.J. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).
http://dx.doi.org/10.1039/b810189b
67.
67.T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393, 51 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.06.011
68.
68.O. A. Vydrov and G. E. Scuseria, J. Chem. Phys. 125, 234109 (2006).
http://dx.doi.org/10.1063/1.2409292
69.
69.O. A. Vydrov, J. Heyd, A. V. Krukau, and G. E. Scuseria, J. Chem. Phys. 125, 074106 (2006).
http://dx.doi.org/10.1063/1.2244560
70.
70.O. A. Vydrov, G. E. Scuseria, and J. P. Perdew, J. Chem. Phys. 126, 154109 (2007).
http://dx.doi.org/10.1063/1.2723119
71.
71.R. Peverati and D. G. Truhlar, Phys. Chem. Chem. Phys. 14, 16187 (2012).
http://dx.doi.org/10.1039/c2cp42576a
72.
72.R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett. 2, 2810 (2011).
http://dx.doi.org/10.1021/jz201170d
73.
73.J. Heyd and G. E. Scuseria, J. Chem. Phys. 121, 1187 (2004).
http://dx.doi.org/10.1063/1.1760074
74.
74.J. Heyd and G. E. Scuseria, J. Chem. Phys. 120, 7274 (2004).
http://dx.doi.org/10.1063/1.1668634
75.
75.J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, J. Chem. Phys. 123, 174101 (2005).
http://dx.doi.org/10.1063/1.2085170
76.
76.A. F. Izmaylov, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 125, 104103 (2006).
http://dx.doi.org/10.1063/1.2347713
77.
77.A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).
http://dx.doi.org/10.1063/1.2404663
78.
78.T. M. Henderson, A. F. Izmaylov, G. Scalmani, and G. E. Scuseria, J. Chem. Phys. 131, 044108 (2009).
http://dx.doi.org/10.1063/1.3185673
79.
79.T. M. Henderson, A. F. Izmaylov, G. E. Scuseria, and A. Savin, J. Chem. Theory Comput. 4, 1254 (2008).
http://dx.doi.org/10.1021/ct800149y
80.
80.S. Grimme, J. Chem. Phys. 124, 034108 (2006).
http://dx.doi.org/10.1063/1.2148954
81.
81.T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys. 8, 4398 (2006).
http://dx.doi.org/10.1039/b608478h
82.
82.S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
83.
83.See supplementary material at http://dx.doi.org/10.1063/1.4936654 for All optimized geometries and harmonic vibrational frequencies.[Supplementary Material]
84.
84.H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, J. Chem. Phys. 115, 3540 (2001).
http://dx.doi.org/10.1063/1.1383587
85.
85.K. E. Riley, M. Pitoňák, P. Jurečka, and P. Hobza, Chem. Rev. 110, 5023 (2012).
http://dx.doi.org/10.1021/cr1000173
86.
86.J. Witte, M. Goldey, J. B. Neaton, and M. Head-Gordon, J. Chem. Theory Comput. 11, 1481 (2015).
http://dx.doi.org/10.1021/ct501050s
87.
87.G. R. Medders, A. W. Götz, M. A. Morales, P. Bajaj, and F. Paesani, J. Chem. Phys. 143, 104102 (2015).
http://dx.doi.org/10.1063/1.4930194
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/21/10.1063/1.4936654
Loading
/content/aip/journal/jcp/143/21/10.1063/1.4936654
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/21/10.1063/1.4936654
2015-12-01
2016-12-08

Abstract

A wide range of density functional theory(DFT) methods (37 altogether), including pure, hybrid, range-separated hybrid, double-hybrid, and dispersion-corrected functionals, have been employed to compute the harmonic vibrational frequencies of eight small water clusters ranging in size from the dimer to four different isomers of the hexamer. These computed harmonic frequencies have been carefully compared to recently published benchmark values that are expected to be very close to the CCSD(T) complete basis set limit. Of the DFT methods examined here, B97 and B97X are the most consistently accurate, deviating from the reference values by less than 20 cm−1 on average and never more than 60 cm−1. The performance of double-hybrid methods including B2PLYP and mPW2-PLYP is only slightly better than more economical approaches, such as the M06-L pure functional and the M06-2X hybrid functional. Additionally, dispersion corrections offer very little improvement in computed frequencies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/21/1.4936654.html;jsessionid=o2PD9XzWtRKUGM-XmT8bndag.x-aip-live-02?itemId=/content/aip/journal/jcp/143/21/10.1063/1.4936654&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/21/10.1063/1.4936654&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/21/10.1063/1.4936654'
Right1,Right2,Right3,