Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/22/10.1063/1.4937154
1.
1.T. A. Waigh, Rep. Prog. Phys. 68, 685 (2005).
http://dx.doi.org/10.1088/0034-4885/68/3/R04
2.
2.P. Cicuta and A. M. Donald, Soft Matter 3, 1449 (2007).
http://dx.doi.org/10.1039/b706004c
3.
3.T. M. Squires and T. G. Mason, Annu. Rev. Fluid Mech. 42, 413 (2010).
http://dx.doi.org/10.1146/annurev-fluid-121108-145608
4.
4.A. M. Puertas and T. Voigtmann, J. Phys.: Condens. Matter 26, 243101 (2014).
http://dx.doi.org/10.1088/0953-8984/26/24/243101
5.
5.T. G. Mason and D. A. Weitz, Phys. Rev. Lett. 74, 1250 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.1250
6.
6.P. Habdas, D. Schaar, A. C. Levitt, and E. R. Weeks, Europhys. Lett. 67, 477 (2004).
http://dx.doi.org/10.1209/epl/i2004-10075-y
7.
7.L. G. Wilson, A. W. Harrison, A. B. Schofield, J. Arlt, and W. C. K. Poon, J. Phys. Chem. B 113, 3806 (2009).
http://dx.doi.org/10.1021/jp8079028
8.
8.L. G. Wilson, A. W. Harrison, W. C. K. Poon, and A. M. Puertas, Europhys. Lett. 93, 58007 (2011).
http://dx.doi.org/10.1209/0295-5075/93/58007
9.
9.C. Reichhardt and C. J. Olson Reichhardt, Phys. Rev. E 74, 011403 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.011403
10.
10.I. Gazuz, A. M. Puertas, T. Voigtmann, and M. Fuchs, Phys. Rev. Lett. 102, 248302 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.248302
11.
11.D. Winter, J. Horbach, P. Virnau, and K. Binder, Phys. Rev. Lett. 108, 028303 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.028303
12.
12.I. Ladadwa and A. Heuer, Phys. Rev. E 87, 012302 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.012302
13.
13.C. F. E. Schroer and A. Heuer, J. Chem. Phys. 138, 12A518 (2013).
http://dx.doi.org/10.1063/1.4772627
14.
14.C. F. E. Schroer and A. Heuer, Phys. Rev. Lett. 110, 067801 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.067801
15.
15.C. Reichhardt and C. J. O. Reichhardt, Phys. Rev. E 91, 032313 (2015).
http://dx.doi.org/10.1103/PhysRevE.91.032313
16.
16.T. Voigtmann and M. Fuchs, Eur. Phys. J.: Spec. Top. 222, 2819 (2013).
http://dx.doi.org/10.1140/epjst/e2013-02060-5
17.
17.I. Gazuz and M. Fuchs, Phys. Rev. E 87, 032304 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.032304
18.
18.T. M. Squires and J. F. Brady, Phys. Fluids 17, 073101 (2005).
http://dx.doi.org/10.1063/1.1960607
19.
19.I. C. Carpen and J. F. Brady, J. Rheol. 49, 1483 (2005).
http://dx.doi.org/10.1122/1.2085174
20.
20.A. S. Khair and J. F. Brady, J. Fluid Mech. 557, 73 (2006).
http://dx.doi.org/10.1017/S0022112006009608
21.
21.R. N. Zia and J. F. Brady, J. Fluid Mech. 658, 188 (2010).
http://dx.doi.org/10.1017/S0022112010001606
22.
22.D. Winter and J. Horbach, J. Chem. Phys. 138, 12A512 (2013).
http://dx.doi.org/10.1063/1.4770335
23.
23.L. F. Cugliandolo, J. Kurchan, and L. Peliti, Phys. Rev. E 55, 3898 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.3898
24.
24.W. Kob, F. Sciortino, and P. Tartaglia, Europhys. Lett. 49, 590 (2000).
http://dx.doi.org/10.1209/epl/i2000-00191-8
25.
25.F. Sciortino and P. Tartaglia, Phys. Rev. Lett. 86, 107 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.107
26.
26.L. Berthier and J.-L. Barrat, J. Chem. Phys. 116, 6228 (2002).
http://dx.doi.org/10.1063/1.1460862
27.
27.I. K. Ono, C. S. O’Hern, D. J. Durian, S. A. Langer, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett. 89, 095703 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.095703
28.
28.D. J. Lacks and M. J. Osborne, Phys. Rev. Lett. 93, 255501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.255501
29.
29.P. Ilg and J.-L. Barrat, Europhys. Lett. 79, 26001 (2007).
http://dx.doi.org/10.1209/0295-5075/79/26001
30.
30.M. Goldstein, J. Chem. Phys. 51, 3728 (1969).
http://dx.doi.org/10.1063/1.1672587
31.
31.F. H. Stillinger, Science 267, 1935 (1995).
http://dx.doi.org/10.1126/science.267.5206.1935
32.
32.B. Doliwa and A. Heuer, Phys. Rev. E 67, 031506 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.031506
33.
33.C. Monthus and J.-P. Bouchaud, J. Phys. A: Math. Gen. 29, 3847 (1996).
http://dx.doi.org/10.1088/0305-4470/29/14/012
34.
34.A. Heuer, B. Doliwa, and A. Saksaengwijit, Phys. Rev. E 72, 021503 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.021503
35.
35.B. Doliwa and A. Heuer, Phys. Rev. E 67, 030501 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.030501
36.
36.O. Rubner and A. Heuer, Phys. Rev. E 78, 011504 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.011504
37.
37.W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.4626
38.
38.S. Büchner and A. Heuer, Phys. Rev. E 60, 6507 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.6507
39.
39.B. Doliwa and A. Heuer, J. Phys.: Condens. Matter 15, S849 (2003).
http://dx.doi.org/10.1088/0953-8984/15/11/309
40.
40.C. Rehwald, O. Rubner, and A. Heuer, Phys. Rev. Lett. 105, 117801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.117801
41.
41.S. Nosé, Mol. Phys. 52, 255 (1984).
http://dx.doi.org/10.1080/00268978400101201
42.
42.W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
43.
43.G. J. Martyna, M. L. Klein, and M. Tuckerman, J. Chem. Phys. 97, 2635 (1992).
http://dx.doi.org/10.1063/1.463940
44.
44.See supplementary material at http://dx.doi.org/10.1063/1.4937154 for additional information and supporting analyses of the data.[Supplementary Material]
45.
45.A. Heuer, J. Phys.: Condens. Matter 20, 373101 (2008).
http://dx.doi.org/10.1088/0953-8984/20/37/373101
46.
46.A. Heuer and S. Büchner, J. Phys.: Condens. Matter 12, 6535 (2000).
http://dx.doi.org/10.1088/0953-8984/12/29/325
47.
47.G. Diezemann and A. Heuer, Phys. Rev. E 83, 031505 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.031505
48.
48.I. Santamaría-Holek and A. Pérez-Madrid, J. Phys. Chem. B 115, 9439 (2011).
http://dx.doi.org/10.1021/jp204459b
49.
49.M. Vogel, B. Doliwa, A. Heuer, and S. C. Glotzer, J. Chem. Phys. 120, 4404 (2004).
http://dx.doi.org/10.1063/1.1644538
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/22/10.1063/1.4937154
Loading
/content/aip/journal/jcp/143/22/10.1063/1.4937154
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/22/10.1063/1.4937154
2015-12-08
2016-12-03

Abstract

In active microrheology, the mechanical properties of a material are tested by adding probe particles which are pulled by an external force. In case of supercooled liquids, strong forcing leads to a thinning of the host material which becomes more pronounced as the system approaches the glass transition. In this work, we provide a quantitative theoretical description of this thinning behavior based on the properties of the Potential Energy Landscape (PEL) of a model glass-former. A key role plays the trap-like nature of the PEL. We find that the mechanical properties in the strongly driven system behave the same as in a quiescent system at an enhanced temperature, giving rise to a well-characterized effective temperature. Furthermore, this effective temperature turns out to be independent of the chosen observable and individually shows up in the thermodynamic and dynamic properties of the system. Based on this underlying theoretical understanding, we can estimate its dependence on temperature and force by the PEL-properties of the quiescent system. We furthermore critically discuss the relevance of effective temperatures obtained by scaling relations for the description of out-of-equilibrium situations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/22/1.4937154.html;jsessionid=d8t1_Z-hoqFDsKzjfMw30teI.x-aip-live-02?itemId=/content/aip/journal/jcp/143/22/10.1063/1.4937154&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/22/10.1063/1.4937154&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/22/10.1063/1.4937154'
Right1,Right2,Right3,