Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/22/10.1063/1.4937155
1.
1.A. Esadze and J. Iwahara, β€œStopped-flow fluorescence kinetic study of protein sliding and intersegment transfer in the target {DNA} search process,” J. Mol. Biol. 426(1), 230–244 (2014).
http://dx.doi.org/10.1016/j.jmb.2013.09.019
2.
2.N. P. Stanford, M. D. Szczelkun, J. F. Marko, and S. E. Halford, β€œOne-and three-dimensional pathways for proteins to reach specific DNA sites,” EMBO J. 19, 6546–6557 (2000).
http://dx.doi.org/10.1093/emboj/19.23.6546
3.
3.A. D. Riggs, S. Bourgeoi, and M. Cohn, β€œLac repressor-operator interaction. 3. Kinetic studies,” J. Mol. Biol. 53(3), 401–417 (1970).
http://dx.doi.org/10.1016/0022-2836(70)90074-4
4.
4.P. H. von Hippel and O. G. Berg, β€œFacilitated target location in biological systems,” J. Biol. Chem. 264, 675–678 (1989).
5.
5.M. A. Lomholt, B. van den Broek, S.-M. J. Kalisch, G. J. L. Wuite, and R. Metzler, β€œFacilitated diffusion with DNA coiling,” Proc. Natl. Acad. Sci. U. S. A. 106(20), 8204–8208 (2009).
http://dx.doi.org/10.1073/pnas.0903293106
6.
6.M. Slutsky, M. Kardar, and L. A. Mirny, β€œDiffusion in correlated random potentials, with applications to {DNA},” Phys. Rev. E 69(6), 61903 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.061903
7.
7.N. Shimamoto, β€œOne-dimensional diffusion of proteins along DNAβ€”Its biological and chemical significance revealed by single-molecue measurements,” J. Biol. Chem. 274, 15293–15296 (1999).
http://dx.doi.org/10.1074/jbc.274.22.15293
8.
8.B. J. Terry, W. E. Jack, and P. Modrich, β€œFacilitated diffusion during catalysis by EcoRI endonucleases. Non-specific interactions in EcoRI catalysis,” J. Biol. Chem. 260, 13130–13137 (1985).
9.
9.T. Hu, A. Y. Grosberg, and B. I. Shklovskii, β€œHow proteins search for their specific sites on DNA: The role of DNA conformation,” Biophys. J. 90(8), 2731–2744 (2006).
http://dx.doi.org/10.1529/biophysj.105.078162
10.
10.A. Veksler and A. B. Kolomeisky, β€œSpeed-selectivity paradox in the protein search for targets on DNA: Is it real or not?,” J. Phys. Chem. B 117, 12695–12701 (2013).
http://dx.doi.org/10.1021/jp311466f
11.
11.O. G. Berg, R. B. Winter, and P. H. von Hippel, β€œDiffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory,” Biochemistry 20(24), 6929–6948 (1981).
http://dx.doi.org/10.1021/bi00527a028
12.
12.S. E. Halford, β€œAn end to 40 years of mistakes in DNA–protein association kinetics?,” Biochem. Soc. Trans. 37(2), 343–348 (2009).
http://dx.doi.org/10.1042/BST0370343
13.
13.M. Sheinman, O. Benichou, Y. Kafri, and R. Voituriez, β€œClasses of fast and specific search mechanisms for proteins on DNA,” Rep. Prog. Phys. 75, 26601 (2012).
http://dx.doi.org/10.1088/0034-4885/75/2/026601
14.
14.L. Mirny, M. Slutsky, Z. Wunderlich, A. Tafvizi, J. S. Leith, and A. Kosmrlj, β€œHow a protein seraches for its site on DNA: The mechanism of facilitated diffusion,” J. Phys. A: Math. Theor. 42, 434013 (2009).
http://dx.doi.org/10.1088/1751-8113/42/43/434013
15.
15.M. Bauer and R. Metzler, β€œGeneralized facilitated diffusion model for DNA-binding proteins with search and recognition states,” Biophys. J. 102(10), 2321–2330 (2012).
http://dx.doi.org/10.1016/j.bpj.2012.04.008
16.
16.A. B. Kolomeisky, β€œPhysics of protein–DNA interactions: Mechanisms of facilitated target search,” Phys. Chem. Chem. Phys. 13(6), 2088–2095 (2011).
http://dx.doi.org/10.1039/C0CP01966F
17.
17.J. Langowski, J. Alves, A. Pingoud, and G. Maass, β€œDoes the specific recognition of DNA by the restriction endonuclease EcoRI involve a linear diffusion step? Investigation of the processivity of the EcoRI endonuclease,” Nucleic Acids Res. 11, 501–513 (1983).
http://dx.doi.org/10.1093/nar/11.2.501
18.
18.R. H. Porecha and J. T. Stivers, β€œUracil DNA glycosylase uses DNA hopping and short-range sliding to trap extrahelical uracils,” Proc. Natl. Acad. Sci. U. S. A. 105, 10791–10796 (2008).
http://dx.doi.org/10.1073/pnas.0801612105
19.
19.M. Lange, M. Kochugaeva, and A. B. Kolomeisky, β€œProtein search for multiple targets on DNA,” J. Chem. Phys. 143(10), 105102 (2015).
http://dx.doi.org/10.1063/1.4930113
20.
20.A. J. Pollak, A. T. Chin, F. L. H. Brown, and N. O. Reich, β€œDNA looping provides for β€˜Intersegmental Hopping’ by proteins: A mechanism for long-range site localization,” J. Mol. Biol. 426, 3539 (2014).
http://dx.doi.org/10.1016/j.jmb.2014.08.002
21.
21.J. Iwahara and G. Marius Clore, β€œDetecting transient intermediates in macromolecular binding by paramagnetic NMR,” Nature 440(7088), 1227–1230 (2006).
http://dx.doi.org/10.1038/nature04673
22.
22.S. E. Halford and J. F. Marko, β€œHow do site-specific DNA-binding proteins find their targets?,” Nucleic Acids Res. 32(10), 3040–3052 (2004).
http://dx.doi.org/10.1093/nar/gkh624
23.
23.M. Hedglin and P. J. O’Brien, β€œHopping enablesa DNA repair glycosylase to search both strands and bypass a bound protein,” ACS Chem. Biol. 5, 427–436 (2010).
http://dx.doi.org/10.1021/cb1000185
24.
24.N. Y. Sidorova, T. Scott, and D. C. Rau, β€œDNA concentration dependent dissociation of EcoRI: Direct transfer or reaction during hopping,” Biophys. J. 104, 1296–1303 (2013).
http://dx.doi.org/10.1016/j.bpj.2013.01.041
25.
25.B. van den Broek, M. A. Lomholt, S. M. J. Kalisch, R. Metzler, and G. J. L. Wuite, β€œHow DNA coiling enhances target localization bo proteins,” Proc. Natl. Acad. Sci. U. S. A. 105, 15738–15742 (2008).
http://dx.doi.org/10.1073/pnas.0804248105
26.
26.D. M. Gowers and S. E. Halford, β€œIsolating contributions from intersegmental transfer to DNA searching by alkyladenine DNA glycosylase,” J. Biol. Chem. 288, 24550–24559 (2013).
http://dx.doi.org/10.1074/jbc.M113.477018
27.
27.D. M. Gowers, G. G. Wilson, and S. E. Halford, β€œMeasurement of the contributions of 1D and 3D pathways to the translocation of a protein along DNA,” Proc. Natl. Acad. Sci. U. S. A. 102, 15883–15888 (2005).
http://dx.doi.org/10.1073/pnas.0505378102
28.
28.N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, 3rd ed. (North Holland, 2007).
29.
29.D. T. Gillespie, β€œA general mehod for numerically simulating the stochastic time evolution of coupled chemical reactions,” J. Comput. Phys. 22, 403–434 (1976).
http://dx.doi.org/10.1016/0021-9991(76)90041-3
30.
30.R. Chang, Physical Chemistry for the Chemical and Biological Sciences (University Science Books, Sausalito, CA, 2000).
31.
31.C. R. Cantor and P. R. Schimmel, Biophysical Chemistry Part III: The Behavior of Biological Macromolecules (W. H. Freeman and Co., New York, 2002).
32.
32.I. Tinoco, K. Sauer, J. C. Wang, and J. D. Puglisi, Physical Chemistry Principles and Applications in Biological Sciences, 4th ed. (Prentice Hall, Upper Saddle River, NJ, 2002).
33.
33.L. Peller and R. A. Alberty, β€œMultiple intermediates in steady state enzyme kinetics. I: The mechanism involving a single substrate and product,” J. Am. Chem. Soc. 81, 5907 (1959).
http://dx.doi.org/10.1021/ja01531a017
34.
34.R. A. Alberty, β€œThe relationship between Michaelis constants, maximum velocities and the equilibrium constant for an enzyme-catalyzed reaction,” J. Am. Chem. Soc. 75, 1928 (1953).
http://dx.doi.org/10.1021/ja01104a045
35.
35.E. L. King and C. Altman, β€œA schematic method of deriving the rate laws for enzyme catalyzed reactions,” J. Phys. Chem. 60, 1375 (1956).
http://dx.doi.org/10.1021/j150544a010
36.
36.M. V. Volkenstein and B. N. Goldstein, β€œA new method for solving the problems of the stationary kinetics of enzymological reactions,” Biochim. Biophys. Acta 115, 471 (1966).
http://dx.doi.org/10.1016/0304-4165(66)90445-4
37.
37.T. L. Hill, β€œStudies in irreversible thermodynamics. IV. Diagramatic representation of steady state fluxes for unimolecular systems,” J. Theor. Biol. 10, 442 (1966).
http://dx.doi.org/10.1016/0022-5193(66)90137-8
38.
38.J. Schnakenberg, β€œNetwork theory of microscopic and macroscopic behavior of master equation systems,” Rev. Mod. Phys. 48, 571–585 (1976).
http://dx.doi.org/10.1103/RevModPhys.48.571
39.
39.W. W. Cleland, β€œEnzyme kinetics,” Annu. Rev. Biochem. 36, 77–112 (1967).
http://dx.doi.org/10.1146/annurev.bi.36.070167.000453
40.
40.A. Ferscht, Structure and Mechanism in Protein Science (W. H. Freeman and Co., New York, 1999).
41.
41.C. Frieden, β€œSlow transitions and hysteretic behavior in enzymes,” Annu. Rev. Biochem. 48, 471–489 (1979).
http://dx.doi.org/10.1146/annurev.bi.48.070179.002351
42.
42.H. P. Lu, L. Xun, and X. S. Xie, β€œSingle-molecule enzymatic dynamics,” Science 282, 1877–1882 (1998).
http://dx.doi.org/10.1126/science.282.5395.1877
43.
43.S. C. Kou, B. J. Cherayil, W. Min, B. P. English, and X. S. Xie, β€œSingle-molecule Michaelis-Menten equations,” J. Phys. Chem. B 109, 19068–19081 (2005).
http://dx.doi.org/10.1021/jp051490q
44.
44.W. Min, I. V. Gopich, B. P. English, S. C. Kou, X. S. Xie, and A. Szabo, β€œWhen does the Michaelis-Menten equation hold for fluctuating enzymes?,” J. Phys. Chem. B 110, 20093 (2006).
http://dx.doi.org/10.1021/jp065187g
45.
45.J. Cao, β€œMichaelis-Menten equation and detailed balance in enzymatic networks,” J. Phys. Chem. B 115, 5493–5498 (2011).
http://dx.doi.org/10.1021/jp110924w
46.
46.A. B. Kolomeisky, β€œMichaelis-Menten relations for complex enzymatic networks,” J. Chem. Phys. 134, 155101 (2011).
http://dx.doi.org/10.1063/1.3580564
47.
47.D. J. Wright, W. E. Jack, and P. Modrich, β€œThe kinetic mechanism of EcoRI endonuclease,” J. Biol. Chem. 274(45), 31896–31902 (1999).
http://dx.doi.org/10.1074/jbc.274.45.31896
48.
48.W. E. Jack, B. J. Terry, and P. Modrich, β€œInvolvement of outside DNA sequences in the major kinetic path by which EcoRI endonuclease locates and leaves its recognition sequence,” Proc. Natl. Acad. Sci. U. S. A. 79(13), 4010–4014 (1982).
http://dx.doi.org/10.1073/pnas.79.13.4010
49.
49.See http://plotdigitizer.sourceforge.net. for Plot Digitizer.
50.
50.See http://www.mathworks.com/matlabcentral/fileexchange/29312-diffxy for the Matlab compatible function diffxy.
51.
51.P. J. Huber, Robust Statistics, Wiley Series in Probability and Statistics (John Wiley & Sons, Inc., Hoboken, NJ, USA, 1981).
52.
52.The Math Works, Inc., The Student Edition of MATLAB, The Language of Scientific Computing, Prentice-Hall, New Jersey, 1997.
53.
53.L. M. Wentzell and S. E. Halford, β€œDNA looping by the SfiI restriction endonuclease,” J. Mol. Biol. 281, 433–444 (1998).
http://dx.doi.org/10.1006/jmbi.1998.1967
54.
54.D. Vuzman, A. Azia, and Y. Levy, β€œSearching DNA via a β€˜monkey bar’ mechanism: The significance of disordered tails,” J. Mol. Biol. 396, 674–684 (2010).
http://dx.doi.org/10.1016/j.jmb.2009.11.056
55.
55.J. Iwahara, M. Zweckstetter, and G. M. Clore, β€œNMR structural and kinetic characterization of a homeodomain diffusing and hopping on nonspecific DNA,” Proc. Natl. Acad. Sci. U. S. A. 103, 15062–15067 (2006).
http://dx.doi.org/10.1073/pnas.0605868103
56.
56. The sites were not strictly identical since no attempt was made to insure the nonspecific DNA surrounding the sites was symmetric around the center of the DNA fragment. to the extent that all nonspecific DNA can be regarded as identical, the sites are identical.
57.
57.L. Ringrose and S. Chabanis, β€œQuantitative comparison of DNA looping in vitro and in vivo: Chromatin increases effective DNA flexibility at short distances,” EMBO J. 18, 6630–6641 (1999).
http://dx.doi.org/10.1093/emboj/18.23.6630
58.
58.J. Shimada and H. Yamakawa, β€œRing closure probabilities for twisted wormlike chains. application to DNA,” Macromolecules 17, 689–698 (1984).
http://dx.doi.org/10.1021/ma00134a028
59.
59.C. Baumann, C. G. Smith, S. B. Bloomfield, and V. A. Bustamante, β€œIonic effects on the elasticity of single DNA molecules,” Proc. Natl. Acad. Sci. U. S. A. 94, 6185–6190 (1997).
http://dx.doi.org/10.1073/pnas.94.12.6185
60.
60.D. Shore, J. Langowski, and R. L. Baldwin, β€œDNA flexibility studied by covalent closure of short fragments into circles,” Proc. Natl. Acad. Sci. U. S. A. 78(8), 4833–4837 (1981).
http://dx.doi.org/10.1073/pnas.78.8.4833
61.
61.Y. M. Wang, R. H. Austin, and E. C. Cox, β€œSingle molecule measurements of repressor protein 1D diffusion on DNA,” Phys. Rev. Lett. 97(4), 048302 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.048302
62.
62.J. Elf, G.-W. Li, and X. Sunney Xie, β€œProbing transcription factor dynamics at the single-molecule level in a living cell,” Science 316(5828), 1191–1194 (2007).
http://dx.doi.org/10.1126/science.1141967
63.
63.S. N. Peterson and N. O. Reich, β€œGATC flanking sequences regulate Dam activity: Evidence for how Dam specificity may influence pap expression,” J. Mol. Biol. 355(3), 459–472 (2006).
http://dx.doi.org/10.1016/j.jmb.2005.11.003
64.
64.N. Mashhoon, M. Carroll, C. Pruss, J. Eberhard, S. Ishikawa, R. A. Estabrook, and N. Reich, β€œFunctional characterization of Escherichia coli DNA adenine methyltransferase, a novel target for antibiotics,” J. Biol. Chem. 279(50), 52075–52081 (2004).
http://dx.doi.org/10.1074/jbc.M408182200
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/22/10.1063/1.4937155
Loading
/content/aip/journal/jcp/143/22/10.1063/1.4937155
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/22/10.1063/1.4937155
2015-12-11
2016-09-25

Abstract

A steady-state analysis for the catalytic turnover of molecules containing two substrate sites is presented. A broad class of Markovian dynamic models, motivated by the action of DNA modifying enzymes and the rich variety of translocation mechanisms associated with these systems (e.g., sliding, hopping, intersegmental transfer, etc.), is considered. The modeling suggests an elementary and general method of data analysis, which enables the extraction of the enzyme’s processivity directly and unambiguously from experimental data. This analysis is not limited to the initial velocity regime. The predictions are validated both against detailed numerical models and by revisiting published experimental data for EcoRI endonuclease acting on DNA.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/22/1.4937155.html;jsessionid=agE1zETEniKVnxAUBlpy9NNe.x-aip-live-02?itemId=/content/aip/journal/jcp/143/22/10.1063/1.4937155&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/22/10.1063/1.4937155&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/22/10.1063/1.4937155'
Right1,Right2,Right3,