Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. Esadze and J. Iwahara, β€œStopped-flow fluorescence kinetic study of protein sliding and intersegment transfer in the target {DNA} search process,” J. Mol. Biol. 426(1), 230–244 (2014).
2.N. P. Stanford, M. D. Szczelkun, J. F. Marko, and S. E. Halford, β€œOne-and three-dimensional pathways for proteins to reach specific DNA sites,” EMBO J. 19, 6546–6557 (2000).
3.A. D. Riggs, S. Bourgeoi, and M. Cohn, β€œLac repressor-operator interaction. 3. Kinetic studies,” J. Mol. Biol. 53(3), 401–417 (1970).
4.P. H. von Hippel and O. G. Berg, β€œFacilitated target location in biological systems,” J. Biol. Chem. 264, 675–678 (1989).
5.M. A. Lomholt, B. van den Broek, S.-M. J. Kalisch, G. J. L. Wuite, and R. Metzler, β€œFacilitated diffusion with DNA coiling,” Proc. Natl. Acad. Sci. U. S. A. 106(20), 8204–8208 (2009).
6.M. Slutsky, M. Kardar, and L. A. Mirny, β€œDiffusion in correlated random potentials, with applications to {DNA},” Phys. Rev. E 69(6), 61903 (2004).
7.N. Shimamoto, β€œOne-dimensional diffusion of proteins along DNAβ€”Its biological and chemical significance revealed by single-molecue measurements,” J. Biol. Chem. 274, 15293–15296 (1999).
8.B. J. Terry, W. E. Jack, and P. Modrich, β€œFacilitated diffusion during catalysis by EcoRI endonucleases. Non-specific interactions in EcoRI catalysis,” J. Biol. Chem. 260, 13130–13137 (1985).
9.T. Hu, A. Y. Grosberg, and B. I. Shklovskii, β€œHow proteins search for their specific sites on DNA: The role of DNA conformation,” Biophys. J. 90(8), 2731–2744 (2006).
10.A. Veksler and A. B. Kolomeisky, β€œSpeed-selectivity paradox in the protein search for targets on DNA: Is it real or not?,” J. Phys. Chem. B 117, 12695–12701 (2013).
11.O. G. Berg, R. B. Winter, and P. H. von Hippel, β€œDiffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory,” Biochemistry 20(24), 6929–6948 (1981).
12.S. E. Halford, β€œAn end to 40 years of mistakes in DNA–protein association kinetics?,” Biochem. Soc. Trans. 37(2), 343–348 (2009).
13.M. Sheinman, O. Benichou, Y. Kafri, and R. Voituriez, β€œClasses of fast and specific search mechanisms for proteins on DNA,” Rep. Prog. Phys. 75, 26601 (2012).
14.L. Mirny, M. Slutsky, Z. Wunderlich, A. Tafvizi, J. S. Leith, and A. Kosmrlj, β€œHow a protein seraches for its site on DNA: The mechanism of facilitated diffusion,” J. Phys. A: Math. Theor. 42, 434013 (2009).
15.M. Bauer and R. Metzler, β€œGeneralized facilitated diffusion model for DNA-binding proteins with search and recognition states,” Biophys. J. 102(10), 2321–2330 (2012).
16.A. B. Kolomeisky, β€œPhysics of protein–DNA interactions: Mechanisms of facilitated target search,” Phys. Chem. Chem. Phys. 13(6), 2088–2095 (2011).
17.J. Langowski, J. Alves, A. Pingoud, and G. Maass, β€œDoes the specific recognition of DNA by the restriction endonuclease EcoRI involve a linear diffusion step? Investigation of the processivity of the EcoRI endonuclease,” Nucleic Acids Res. 11, 501–513 (1983).
18.R. H. Porecha and J. T. Stivers, β€œUracil DNA glycosylase uses DNA hopping and short-range sliding to trap extrahelical uracils,” Proc. Natl. Acad. Sci. U. S. A. 105, 10791–10796 (2008).
19.M. Lange, M. Kochugaeva, and A. B. Kolomeisky, β€œProtein search for multiple targets on DNA,” J. Chem. Phys. 143(10), 105102 (2015).
20.A. J. Pollak, A. T. Chin, F. L. H. Brown, and N. O. Reich, β€œDNA looping provides for β€˜Intersegmental Hopping’ by proteins: A mechanism for long-range site localization,” J. Mol. Biol. 426, 3539 (2014).
21.J. Iwahara and G. Marius Clore, β€œDetecting transient intermediates in macromolecular binding by paramagnetic NMR,” Nature 440(7088), 1227–1230 (2006).
22.S. E. Halford and J. F. Marko, β€œHow do site-specific DNA-binding proteins find their targets?,” Nucleic Acids Res. 32(10), 3040–3052 (2004).
23.M. Hedglin and P. J. O’Brien, β€œHopping enablesa DNA repair glycosylase to search both strands and bypass a bound protein,” ACS Chem. Biol. 5, 427–436 (2010).
24.N. Y. Sidorova, T. Scott, and D. C. Rau, β€œDNA concentration dependent dissociation of EcoRI: Direct transfer or reaction during hopping,” Biophys. J. 104, 1296–1303 (2013).
25.B. van den Broek, M. A. Lomholt, S. M. J. Kalisch, R. Metzler, and G. J. L. Wuite, β€œHow DNA coiling enhances target localization bo proteins,” Proc. Natl. Acad. Sci. U. S. A. 105, 15738–15742 (2008).
26.D. M. Gowers and S. E. Halford, β€œIsolating contributions from intersegmental transfer to DNA searching by alkyladenine DNA glycosylase,” J. Biol. Chem. 288, 24550–24559 (2013).
27.D. M. Gowers, G. G. Wilson, and S. E. Halford, β€œMeasurement of the contributions of 1D and 3D pathways to the translocation of a protein along DNA,” Proc. Natl. Acad. Sci. U. S. A. 102, 15883–15888 (2005).
28.N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, 3rd ed. (North Holland, 2007).
29.D. T. Gillespie, β€œA general mehod for numerically simulating the stochastic time evolution of coupled chemical reactions,” J. Comput. Phys. 22, 403–434 (1976).
30.R. Chang, Physical Chemistry for the Chemical and Biological Sciences (University Science Books, Sausalito, CA, 2000).
31.C. R. Cantor and P. R. Schimmel, Biophysical Chemistry Part III: The Behavior of Biological Macromolecules (W. H. Freeman and Co., New York, 2002).
32.I. Tinoco, K. Sauer, J. C. Wang, and J. D. Puglisi, Physical Chemistry Principles and Applications in Biological Sciences, 4th ed. (Prentice Hall, Upper Saddle River, NJ, 2002).
33.L. Peller and R. A. Alberty, β€œMultiple intermediates in steady state enzyme kinetics. I: The mechanism involving a single substrate and product,” J. Am. Chem. Soc. 81, 5907 (1959).
34.R. A. Alberty, β€œThe relationship between Michaelis constants, maximum velocities and the equilibrium constant for an enzyme-catalyzed reaction,” J. Am. Chem. Soc. 75, 1928 (1953).
35.E. L. King and C. Altman, β€œA schematic method of deriving the rate laws for enzyme catalyzed reactions,” J. Phys. Chem. 60, 1375 (1956).
36.M. V. Volkenstein and B. N. Goldstein, β€œA new method for solving the problems of the stationary kinetics of enzymological reactions,” Biochim. Biophys. Acta 115, 471 (1966).
37.T. L. Hill, β€œStudies in irreversible thermodynamics. IV. Diagramatic representation of steady state fluxes for unimolecular systems,” J. Theor. Biol. 10, 442 (1966).
38.J. Schnakenberg, β€œNetwork theory of microscopic and macroscopic behavior of master equation systems,” Rev. Mod. Phys. 48, 571–585 (1976).
39.W. W. Cleland, β€œEnzyme kinetics,” Annu. Rev. Biochem. 36, 77–112 (1967).
40.A. Ferscht, Structure and Mechanism in Protein Science (W. H. Freeman and Co., New York, 1999).
41.C. Frieden, β€œSlow transitions and hysteretic behavior in enzymes,” Annu. Rev. Biochem. 48, 471–489 (1979).
42.H. P. Lu, L. Xun, and X. S. Xie, β€œSingle-molecule enzymatic dynamics,” Science 282, 1877–1882 (1998).
43.S. C. Kou, B. J. Cherayil, W. Min, B. P. English, and X. S. Xie, β€œSingle-molecule Michaelis-Menten equations,” J. Phys. Chem. B 109, 19068–19081 (2005).
44.W. Min, I. V. Gopich, B. P. English, S. C. Kou, X. S. Xie, and A. Szabo, β€œWhen does the Michaelis-Menten equation hold for fluctuating enzymes?,” J. Phys. Chem. B 110, 20093 (2006).
45.J. Cao, β€œMichaelis-Menten equation and detailed balance in enzymatic networks,” J. Phys. Chem. B 115, 5493–5498 (2011).
46.A. B. Kolomeisky, β€œMichaelis-Menten relations for complex enzymatic networks,” J. Chem. Phys. 134, 155101 (2011).
47.D. J. Wright, W. E. Jack, and P. Modrich, β€œThe kinetic mechanism of EcoRI endonuclease,” J. Biol. Chem. 274(45), 31896–31902 (1999).
48.W. E. Jack, B. J. Terry, and P. Modrich, β€œInvolvement of outside DNA sequences in the major kinetic path by which EcoRI endonuclease locates and leaves its recognition sequence,” Proc. Natl. Acad. Sci. U. S. A. 79(13), 4010–4014 (1982).
49.See for Plot Digitizer.
50.See for the Matlab compatible function diffxy.
51.P. J. Huber, Robust Statistics, Wiley Series in Probability and Statistics (John Wiley & Sons, Inc., Hoboken, NJ, USA, 1981).
52.The Math Works, Inc., The Student Edition of MATLAB, The Language of Scientific Computing, Prentice-Hall, New Jersey, 1997.
53.L. M. Wentzell and S. E. Halford, β€œDNA looping by the SfiI restriction endonuclease,” J. Mol. Biol. 281, 433–444 (1998).
54.D. Vuzman, A. Azia, and Y. Levy, β€œSearching DNA via a β€˜monkey bar’ mechanism: The significance of disordered tails,” J. Mol. Biol. 396, 674–684 (2010).
55.J. Iwahara, M. Zweckstetter, and G. M. Clore, β€œNMR structural and kinetic characterization of a homeodomain diffusing and hopping on nonspecific DNA,” Proc. Natl. Acad. Sci. U. S. A. 103, 15062–15067 (2006).
56. The sites were not strictly identical since no attempt was made to insure the nonspecific DNA surrounding the sites was symmetric around the center of the DNA fragment. to the extent that all nonspecific DNA can be regarded as identical, the sites are identical.
57.L. Ringrose and S. Chabanis, β€œQuantitative comparison of DNA looping in vitro and in vivo: Chromatin increases effective DNA flexibility at short distances,” EMBO J. 18, 6630–6641 (1999).
58.J. Shimada and H. Yamakawa, β€œRing closure probabilities for twisted wormlike chains. application to DNA,” Macromolecules 17, 689–698 (1984).
59.C. Baumann, C. G. Smith, S. B. Bloomfield, and V. A. Bustamante, β€œIonic effects on the elasticity of single DNA molecules,” Proc. Natl. Acad. Sci. U. S. A. 94, 6185–6190 (1997).
60.D. Shore, J. Langowski, and R. L. Baldwin, β€œDNA flexibility studied by covalent closure of short fragments into circles,” Proc. Natl. Acad. Sci. U. S. A. 78(8), 4833–4837 (1981).
61.Y. M. Wang, R. H. Austin, and E. C. Cox, β€œSingle molecule measurements of repressor protein 1D diffusion on DNA,” Phys. Rev. Lett. 97(4), 048302 (2006).
62.J. Elf, G.-W. Li, and X. Sunney Xie, β€œProbing transcription factor dynamics at the single-molecule level in a living cell,” Science 316(5828), 1191–1194 (2007).
63.S. N. Peterson and N. O. Reich, β€œGATC flanking sequences regulate Dam activity: Evidence for how Dam specificity may influence pap expression,” J. Mol. Biol. 355(3), 459–472 (2006).
64.N. Mashhoon, M. Carroll, C. Pruss, J. Eberhard, S. Ishikawa, R. A. Estabrook, and N. Reich, β€œFunctional characterization of Escherichia coli DNA adenine methyltransferase, a novel target for antibiotics,” J. Biol. Chem. 279(50), 52075–52081 (2004).

Data & Media loading...


Article metrics loading...



A steady-state analysis for the catalytic turnover of molecules containing two substrate sites is presented. A broad class of Markovian dynamic models, motivated by the action of DNA modifying enzymes and the rich variety of translocation mechanisms associated with these systems (e.g., sliding, hopping, intersegmental transfer, etc.), is considered. The modeling suggests an elementary and general method of data analysis, which enables the extraction of the enzyme’s processivity directly and unambiguously from experimental data. This analysis is not limited to the initial velocity regime. The predictions are validated both against detailed numerical models and by revisiting published experimental data for EcoRI endonuclease acting on DNA.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd