Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/22/10.1063/1.4937570
1.
1.M. A. Collins, Theor. Chem. Acc. 108, 313 (2002).
http://dx.doi.org/10.1007/s00214-002-0383-5
2.
2.J. M. Bowman, G. Czakó, and B. Fu, Phys. Chem. Chem. Phys. 13, 8094 (2011).
http://dx.doi.org/10.1039/c0cp02722g
3.
3.J. Li, B. Jiang, H. Song, J. Ma, B. Zhao, R. Dawes, and H. Guo, J. Phys. Chem. A 119, 4667 (2015).
http://dx.doi.org/10.1021/acs.jpca.5b02510
4.
4.L. M. Raff, R. Komanduri, M. Hagan, and S. T. S. Bukkapatnam, Neural Networks in Chemical Reaction Dynamics (Oxford University Press, Oxford, 2012).
5.
5.J. Chen, X. Xu, and D. H. Zhang, J. Chem. Phys. 138, 154301 (2013).
http://dx.doi.org/10.1063/1.4801658
6.
6.B. Jiang and H. Guo, J. Chem. Phys. 139, 054112 (2013).
http://dx.doi.org/10.1063/1.4817187
7.
7.J. Li, B. Jiang, and H. Guo, J. Chem. Phys. 139, 204103 (2013).
http://dx.doi.org/10.1063/1.4832697
8.
8.A. Li and H. Guo, J. Chem. Phys. 140, 224313 (2014).
http://dx.doi.org/10.1063/1.4881943
9.
9.J. Li, J. Chen, D. H. Zhang, and H. Guo, J. Chem. Phys. 140, 044327 (2014).
http://dx.doi.org/10.1063/1.4863138
10.
10.J. Li and H. Guo, Phys. Chem. Chem. Phys. 16, 6753 (2014).
http://dx.doi.org/10.1039/c4cp00241e
11.
11.J. Li, J. Chen, Z. Zhao, D. Xie, D. H. Zhang, and H. Guo, J. Chem. Phys. 142, 204302 (2015).
http://dx.doi.org/10.1063/1.4921412
12.
12.N. K. Srinivasan, M. C. Su, J. W. Sutherland, and J. V. Michael, J. Phys. Chem. A 109, 1857 (2005).
http://dx.doi.org/10.1021/jp040679j
13.
13.B. Zhang, W. C. Shiu, J. J. Lin, and K. Liu, J. Chem. Phys. 122, 131102 (2005).
http://dx.doi.org/10.1063/1.1885466
14.
14.B. Zhang, W. C. Shiu, and K. Liu, J. Phys. Chem. A 109, 8983 (2005).
http://dx.doi.org/10.1021/jp0536605
15.
15.B. Zhang, W. C. Shiu, and K. Liu, J. Phys. Chem. A 109, 8989 (2005).
http://dx.doi.org/10.1021/jp053661x
16.
16.M. D. Wheeler, M. Tsiouris, M. I. Lester, and G. Lendvay, J. Chem. Phys. 112, 6590 (2000).
http://dx.doi.org/10.1063/1.481232
17.
17.M. Tsiouris, M. D. Wheeler, and M. I. Lester, J. Chem. Phys. 114, 187 (2001).
http://dx.doi.org/10.1063/1.1328747
18.
18.K. D. Dobbs, D. A. Dixon, and A. Komornicki, J. Chem. Phys. 98, 8852 (1993).
http://dx.doi.org/10.1063/1.464442
19.
19.V. S. Melissas and D. G. Truhlar, J. Chem. Phys. 99, 1013 (1993).
http://dx.doi.org/10.1063/1.465401
20.
20.B. J. Lynch, P. L. Fast, M. Harris, and D. G. Truhlar, J. Phys. Chem. A 104, 4811 (2000).
http://dx.doi.org/10.1021/jp000497z
21.
21.L. Masgrau, A. Gonzalez-Lafont, and J. M. Lluch, J. Chem. Phys. 114, 2154 (2001).
http://dx.doi.org/10.1063/1.1335655
22.
22.S. R. Sellevag, G. Nyman, and C. J. Nielsen, J. Phys. Chem. A 110, 141 (2006).
http://dx.doi.org/10.1021/jp0549778
23.
23.B. A. Ellingson, J. Pu, H. Lin, Y. Zhao, and D. G. Truhlar, J. Phys. Chem. A 111, 11706 (2007).
http://dx.doi.org/10.1021/jp072843j
24.
24.A. Karton, A. Tarnopolsky, J.-F. Lamere, G. C. Schatz, and J. M. L. Martin, J. Phys. Chem. A 112, 12868 (2008).
http://dx.doi.org/10.1021/jp801805p
25.
25.J. Espinosa-García and J. C. Corchado, J. Chem. Phys. 112, 5731 (2000).
http://dx.doi.org/10.1063/1.481148
26.
26.H.-G. Yu, J. Chem. Phys. 114, 2967 (2001).
http://dx.doi.org/10.1063/1.1342218
27.
27.W. Wang and Y. Zhao, J. Chem. Phys. 137, 214306 (2012).
http://dx.doi.org/10.1063/1.4768874
28.
28.J. W. Allen, W. H. Green, Y. Li, H. Guo, and Y. V. Suleimanov, J. Chem. Phys. 138, 221103 (2013).
http://dx.doi.org/10.1063/1.4811329
29.
29.H. Song, S.-Y. Lee, M. Yang, and Y. Lu, J. Chem. Phys. 139, 154310 (2013).
http://dx.doi.org/10.1063/1.4825100
30.
30.H. Song, J. Li, B. Jiang, M. Yang, Y. Lu, and H. Guo, J. Chem. Phys. 140, 084307 (2014).
http://dx.doi.org/10.1063/1.4866426
31.
31.J. Espinosa-Garcia and J. C. Corchado, Theor. Chem. Acc. 134, 1 (2015).
http://dx.doi.org/10.1016/j.comptc.2015.06.034
32.
32.J. Espinosa-Garcia and J. C. Corchado, J. Phys. Chem. B (published online 2015).
http://dx.doi.org/10.1021/acs.jpcb.5b04290
33.
33.Y. V. Suleimanov and J. Espinosa-Garcia, J. Phys. Chem. B (published online 2015).
http://dx.doi.org/10.1021/acs.jpcb.5b02103
34.
34.T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys. 127, 221106 (2007).
http://dx.doi.org/10.1063/1.2817618
35.
35.G. Knizia, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 130, 054104 (2009).
http://dx.doi.org/10.1063/1.3054300
36.
36.Z. Xie and J. M. Bowman, J. Chem. Theory Comput. 6, 26 (2010).
http://dx.doi.org/10.1021/ct9004917
37.
37.See supplementary material at http://dx.doi.org/10.1063/1.4937570 for additional results.[Supplementary Material]
38.
38.H. Basch and S. Hoz, J. Phys. Chem. A 101, 4416 (1997).
http://dx.doi.org/10.1021/jp970011n
39.
39.D. G. Truhlar, A. D. Issacson, and B. C. Garrett, in Theory of Chemical Reaction Dynamics, edited by M. Bear (CRC, Boca Raton, 1985), p. 65.
40.
40.J. C. Corchado, Y.-Y. Chuang, P. L. Fast, W.-P. Hu, Y.-P. Liu, G. C. Lynch, K. A. Nguyen, C. F. Jackels, A. Fernandez Ramos, B. A. Ellingson, B. J. Lynch, J. Zheng, V. S. Melissas, J. Villà, I. Rossi, E. L. Coitiño, J. Pu, T. V. Albu, R. Steckler, B. C. Garrett, A. D. Isaacson, and D. G. Truhlar, POLYRATE, version 9.7 (University of Minnesota, Minneapolis, 2007).
41.
41.X. Hu, W. L. Hase, and T. Pirraglia, J. Comput. Chem. 12, 1014 (1991).
http://dx.doi.org/10.1002/jcc.540120814
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/22/10.1063/1.4937570
Loading
/content/aip/journal/jcp/143/22/10.1063/1.4937570
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/22/10.1063/1.4937570
2015-12-11
2016-12-09

Abstract

A globally accurate full-dimensional potential energy surface (PES) for the OH + CH → HO + CHreaction is developed using the permutation invariant polynomial-neural network approach based on ∼135 000 points at the level of correlated coupled cluster singles, doubles, and perturbative triples level with the augmented correlation consistent polarized valence triple-zeta basis set. The total root mean square fitting error is only 3.9 meV or 0.09 kcal/mol. This PES is shown to reproduce energies, geometries, and harmonic frequencies of stationary points along the reaction path. Kinetic and dynamical calculations on the PES indicated a good agreement with the available experimental data.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/22/1.4937570.html;jsessionid=RtkMtiiSwH3dXnCsdT2sEJUO.x-aip-live-02?itemId=/content/aip/journal/jcp/143/22/10.1063/1.4937570&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/22/10.1063/1.4937570&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/22/10.1063/1.4937570'
Right1,Right2,Right3,