Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/23/10.1063/1.4937376
1.
1.H. Ohtaki, Monatsh. Chem. 132, 1237 (2001).
http://dx.doi.org/10.1007/s007060170016
2.
2.H. Ohtaki and T. Radnai, Chem. Rev. 93, 1157 (1993).
http://dx.doi.org/10.1021/cr00019a014
3.
3.Y. Marcus, Chem. Rev. 109, 1346 (2009).
http://dx.doi.org/10.1021/cr8003828
4.
4.P. G. Mikolaj and C. J. Pings, Phys. Chem. Liq. 1, 93 (1968).
http://dx.doi.org/10.1080/00319106808083789
5.
5.S. Katzoff, J. Chem. Phys. 2, 841 (1934).
http://dx.doi.org/10.1063/1.1749406
6.
6.W. L. Jorgensen, Chem. Phys. Lett. 70, 326 (1980).
http://dx.doi.org/10.1016/0009-2614(80)85344-9
7.
7.M. Mezei and D. L. Beveridge, J. Chem. Phys. 74, 622 (1981).
http://dx.doi.org/10.1063/1.440819
8.
8.J. E. Enderby, Chem. Soc. Rev. 24, 159 (1995).
http://dx.doi.org/10.1039/cs9952400159
9.
9.G. W. Neilson, P. E. Mason, S. Ramos, and D. Sullivan, Philos. Trans. R. Soc., A 359, 1575 (2001).
http://dx.doi.org/10.1098/rsta.2001.0866
10.
10.J. D. Bernal, Trans. Faraday Soc. 33, 27 (1937).
http://dx.doi.org/10.1039/tf9373300027
11.
11.C. A. Coulson and G. S. Rushbrooke, Phys. Rev. 56, 1216 (1939).
http://dx.doi.org/10.1103/PhysRev.56.1216
12.
12.A. Rahman and F. H. Stillinger, J. Chem. Phys. 55, 3336 (1971).
http://dx.doi.org/10.1063/1.1676585
13.
13.P. J. Rossky and M. Karplus, J. Am. Chem. Soc. 101, 1913 (1979).
http://dx.doi.org/10.1021/ja00502a001
14.
14.R. Buchner, G. T. Hefter, and P. M. May, J. Phys. Chem. A 103, 1 (1999).
http://dx.doi.org/10.1021/jp982977k
15.
15.H. S. Frank and W. Y. Wen, Discuss. Faraday Soc. 24, 133 (1957).
http://dx.doi.org/10.1039/df9572400133
16.
16.H. J. Bakker, Chem. Rev. 108, 1456 (2008).
http://dx.doi.org/10.1021/cr0206622
17.
17.J. T. O’Brien, J. S. Prell, M. F. Bush, and E. R. Williams, J. Am. Chem. Soc. 132, 8248 (2010).
http://dx.doi.org/10.1021/ja1024113
18.
18.K. J. Tielrooij, N. Garcia-Araez, M. Bonn, and H. J. Bakker, Science 328, 1006 (2010).
http://dx.doi.org/10.1126/science.1183512
19.
19.T. L. Beck, J. Phys. Chem. B 115, 9776 (2011).
http://dx.doi.org/10.1021/jp204883h
20.
20.S. J. Irudayam and R. H. Henchman, J. Chem. Phys. 137, 034508 (2012).
http://dx.doi.org/10.1063/1.4735267
21.
21.S. J. Suresh, K. Kapoor, S. Talwar, and A. Rastogi, J. Mol. Liq. 174, 135 (2012).
http://dx.doi.org/10.1016/j.molliq.2012.07.021
22.
22.S. Enami and A. J. Colussi, J. Chem. Phys. 138, 184706 (2013).
http://dx.doi.org/10.1063/1.4803652
23.
23.S. Enami and A. J. Colussi, J. Phys. Chem. B 118, 1861 (2014).
http://dx.doi.org/10.1021/jp411385u
24.
24.C. Chen, C. C. Huang, I. Waluyo, T. Weiss, L. G. M. Pettersson, and A. Nilsson, Phys. Chem. Chem. Phys. 17, 8427 (2015).
http://dx.doi.org/10.1039/C4CP04759A
25.
25.F. J. Vogrin, P. S. Knapp, W. L. Flint, A. Anton, G. Highberger, and E. Malinowski, J. Chem. Phys. 54, 178 (1971).
http://dx.doi.org/10.1063/1.1674590
26.
26.G. Voronoi, J. Reine Angew. Math. 134, 198 (1908).
27.
27.A. Rahman, J. Chem. Phys. 45, 2585 (1966).
http://dx.doi.org/10.1063/1.1727978
28.
28.M. Tanemura, Y. Hiwatari, H. Matsuda, T. Ogawa, N. Ogita, and A. Ueda, Prog. Theor. Phys. 58, 1079 (1977).
http://dx.doi.org/10.1143/PTP.58.1079
29.
29.P. K. Mehrotra and D. L. Beveridge, J. Am. Chem. Soc. 102, 4287 (1980).
http://dx.doi.org/10.1021/ja00533a001
30.
30.E. E. David and C. W. David, J. Chem. Phys. 76, 4611 (1982).
http://dx.doi.org/10.1063/1.443540
31.
31.J. N. Cape, J. L. Finney, and L. V. Woodcock, J. Chem. Phys. 75, 2366 (1981).
http://dx.doi.org/10.1063/1.442299
32.
32.A. Geiger, N. N. Medvedev, and Y. I. Naberukhin, J. Struct. Chem. 33, 226 (1992).
http://dx.doi.org/10.1007/BF00781364
33.
33.T. J. Hsu and C. Y. Mou, Mol. Phys. 75, 1329 (1992).
http://dx.doi.org/10.1080/00268979200101011
34.
34.G. Ruocco, M. Sampoli, and R. Vallauri, J. Chem. Phys. 96, 6167 (1992).
http://dx.doi.org/10.1063/1.462889
35.
35.P. Jedlovszky, J. Chem. Phys. 113, 9113 (2000).
http://dx.doi.org/10.1063/1.1319617
36.
36.J. C. G. Montoro and J. L. F. Abascal, J. Phys. Chem. 97, 4211 (1993).
http://dx.doi.org/10.1021/j100118a044
37.
37.J. A. van Meel, L. Filion, C. Valeriani, and D. Frenkel, J. Chem. Phys. 136, 234107 (2012).
http://dx.doi.org/10.1063/1.4729313
38.
38.R. H. Henchman and S. J. Irudayam, J. Phys. Chem. B 114, 16792 (2010).
http://dx.doi.org/10.1021/jp105381s
39.
39.S. J. Irudayam and R. H. Henchman, Mol. Phys. 109, 37 (2011).
http://dx.doi.org/10.1080/00268976.2010.532162
40.
40.P. A. Giguère, J. Chem. Phys. 87, 4835 (1987).
http://dx.doi.org/10.1063/1.452845
41.
41.R. H. Henchman and S. J. Cockram, Faraday Discuss. 167, 529 (2013).
http://dx.doi.org/10.1039/c3fd00080j
42.
42.I. S. Joung and T. E. Cheatham, J. Phys. Chem. B 112, 9020 (2008).
http://dx.doi.org/10.1021/jp8001614
43.
43.B. Guillot and Y. Guissani, J. Chem. Phys. 99, 8075 (1993).
http://dx.doi.org/10.1063/1.465634
44.
44.L. Martinez, R. Andrade, E. G. Birgin, and J. M. Martinez, J. Comput. Chem. 30, 2157 (2009).
http://dx.doi.org/10.1002/jcc.21224
45.
45.A. Soper and K. Weckstrom, Biophys. Chem. 124, 180 (2006).
http://dx.doi.org/10.1016/j.bpc.2006.04.009
46.
46.S. Ansell, A. C. Barnes, P. E. Mason, G. W. Neilson, and S. Ramos, Biophys. Chem. 124, 171 (2006).
http://dx.doi.org/10.1016/j.bpc.2006.04.018
47.
47.P. R. Smirnov, Russ. J. Gen. Chem. 83, 1469 (2013).
http://dx.doi.org/10.1134/S107036321308001X
48.
48.P. E. Mason, S. Ansell, G. W. Neilson, and S. B. Rempe, J. Phys. Chem. B 119, 2003 (2015).
http://dx.doi.org/10.1021/jp511508n
49.
49.R. D. Broadbent and G. W. Neilson, J. Chem. Phys. 100, 7543 (1994).
http://dx.doi.org/10.1063/1.466848
50.
50.A. Filipponi, D. T. Bowron, C. Lobban, and J. L. Finney, Phys. Rev. Lett. 79, 1293 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1293
51.
51.D. T. Bowron, A. Filipponi, M. A. Roberts, and J. L. Finney, Phys. Rev. Lett. 81, 4164 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.4164
52.
52.S. J. Irudayam and R. H. Henchman, J. Phys.: Condens. Matter 22, 284108 (2010).
http://dx.doi.org/10.1088/0953-8984/22/28/284108
53.
53.M. L. San-Roman, J. Hernandez-Cobos, H. Saint-Martin, and I. Ortega-Blake, Theor. Chem. Acc. 126, 197 (2010).
http://dx.doi.org/10.1007/s00214-009-0644-7
54.
54.T. Yamaguchi, H. Ohzono, M. Yamagami, K. Yamanaka, K. Yoshida, and H. Wakita, J. Mol. Liq. 153, 2 (2010).
http://dx.doi.org/10.1016/j.molliq.2009.10.012
55.
55.T. Ikeda and M. Boero, J. Chem. Phys. 137, 041101 (2012).
http://dx.doi.org/10.1063/1.4742151
56.
56.J. Mahler and I. Persson, Inorg. Chem. 51, 425 (2012).
http://dx.doi.org/10.1021/ic2018693
57.
57.C. N. Rowley and B. Roux, J. Chem. Theory Comput. 8, 3526 (2012).
http://dx.doi.org/10.1021/ct300091w
58.
58.A. Bankura, M. L. Carnevale, and V. Klein, J. Chem. Phys. 138, 014501 (2013).
http://dx.doi.org/10.1063/1.4772761
59.
59.A. Boda and S. M. Ali, J. Mol. Liq. 179, 34 (2013).
http://dx.doi.org/10.1016/j.molliq.2012.12.007
60.
60.H. B. Ma, Int. J. Quantum Chem. 114, 1006 (2014).
http://dx.doi.org/10.1002/qua.24597
61.
61.V. Migliorati, F. Sessa, G. Aquilanti, and P. D’Angelo, J. Chem. Phys. 141, 044509 (2014).
http://dx.doi.org/10.1063/1.4890870
62.
62.See supplementary material at http://dx.doi.org/10.1063/1.4937376 for NN and NNNW PMFs of Cs+.[Supplementary Material]
63.
63.J. L. Fulton, G. K. Schenter, M. D. Baer, C. J. Mundy, L. X. Dang, and M. Balasubramanian, J. Phys. Chem. B 114, 12926 (2010).
http://dx.doi.org/10.1021/jp106378p
64.
64.D. Sabo, D. Jiao, S. Varma, L. R. Pratt, and S. B. Rempe, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 109, 266 (2013).
http://dx.doi.org/10.1039/c3pc90009f
65.
65.D. M. Rogers, D. A. Jiao, L. R. Pratt, and S. B. Rempe, Annu. Rep. Comput. Chem. 8, 71 (2012).
http://dx.doi.org/10.1016/B978-0-444-59440-2.00004-1
66.
66.M. I. Chaudhari, D. Sabo, L. R. Pratt, and S. B. Rempe, J. Phys. Chem. B 119, 9098 (2015).
http://dx.doi.org/10.1021/jp508866h
67.
67.K. D. Collins, Proc. Natl. Acad. Sci. U. S. A. 92, 5553 (1995).
http://dx.doi.org/10.1073/pnas.92.12.5553
68.
68.J. Chandrasekhar, D. C. Spellmeyer, and W. L. Jorgensen, J. Am. Chem. Soc. 106, 903 (1984).
http://dx.doi.org/10.1021/ja00316a012
69.
69.R. Mancinelli, A. Botti, F. Bruni, M. A. Ricci, and A. K. Soper, Phys. Chem. Chem. Phys. 9, 2959 (2007).
http://dx.doi.org/10.1039/b701855j
70.
70.P. Jedlovszky, M. Predota, and I. Nezbeda, Mol. Phys. 104, 2465 (2006).
http://dx.doi.org/10.1080/00268970600761101
71.
71.D. Paschek and R. Ludwig, Angew. Chem., Int. Ed. 50, 352 (2011).
http://dx.doi.org/10.1002/anie.201004501
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/23/10.1063/1.4937376
Loading
/content/aip/journal/jcp/143/23/10.1063/1.4937376
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/23/10.1063/1.4937376
2015-12-15
2016-12-07

Abstract

A range of methods are presented to calculate a solute’s hydration shell from computer simulations of dilute solutions of monatomic ions and noble gas atoms. The methods are designed to be parameter-free and instantaneous so as to make them more general, accurate, and consequently applicable to disordered systems. One method is a modified nearest-neighbor method, another considers solute-water Lennard-Jones overlap followed by hydrogen-bond rearrangement, while three methods compare various combinations of water-solute and water-water forces. The methods are tested on a series of monatomic ions and solutes and compared with the values from cutoffs in the radial distribution function, the nearest-neighbor distribution functions, and the strongest-acceptor hydrogen bond definition for anions. The Lennard-Jones overlap method and one of the force-comparison methods are found to give a hydration shell for cations which is in reasonable agreement with that using a cutoff in the radial distribution function. Further modifications would be required, though, to make them capture the neighboring water molecules of noble-gas solutes if these weakly interacting molecules are considered to constitute the hydration shell.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/23/1.4937376.html;jsessionid=cFI5qf-e6omqz9glRIo77zTU.x-aip-live-03?itemId=/content/aip/journal/jcp/143/23/10.1063/1.4937376&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/23/10.1063/1.4937376&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/23/10.1063/1.4937376'
Right1,Right2,Right3,