Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/24/10.1063/1.4937153
1.
1.H. Y. Saad and W. I. Higuchi, J. Pharm. Sci. 54, 1205 (1965).
http://dx.doi.org/10.1002/jps.2600540826
2.
2.M. S. Brown and J. L. Goldstein, Science 232, 34 (1986).
http://dx.doi.org/10.1126/science.3513311
3.
3.T.-Y. Chang, C. C. Y. Chang, N. Ohgami, and Y. Yamauchi, Annu. Rev. Cell Dev. Biol. 22, 129 (2006).
http://dx.doi.org/10.1146/annurev.cellbio.22.010305.104656
4.
4.R. Demel and B. Dekruyff, Biochim. Biophys. Acta 457, 109 (1976).
http://dx.doi.org/10.1016/0304-4157(76)90008-3
5.
5.D. Lingwood and K. Simons, Science 327, 46 (2010).
http://dx.doi.org/10.1126/science.1174621
6.
6.D. Papahadj, K. Jacobson, S. Nir, and T. Isac, Biochim. Biophys. Acta 311, 330 (1973).
http://dx.doi.org/10.1016/0005-2736(73)90314-3
7.
7.J. Ipsen, G. Karlstrom, O. Mouritsen, H. Wennerstrom, and M. Zuckermann, Biochim. Biophys. Acta 905, 162 (1987).
http://dx.doi.org/10.1016/0005-2736(87)90020-4
8.
8.M. Vist and J. Davis, Biochemistry 29, 451 (1990).
http://dx.doi.org/10.1021/bi00454a021
9.
9.C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, Biophys. J. 80, 1417 (2001).
http://dx.doi.org/10.1016/S0006-3495(01)76114-0
10.
10.H. Ohvo-Rekila, B. Ramstedt, P. Leppimaki, and J. Slotte, Prog. Lipid Res. 41, 66 (2002).
http://dx.doi.org/10.1016/S0163-7827(01)00020-0
11.
11.S. L. Veatch and S. L. Keller, Phys. Rev. Lett. 89, 268101 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.268101
12.
12.A. T. Hammond, F. A. Heberle, T. Baumgart, D. Holowka, B. Baird, and G. W. Feigenson, Proc. Natl. Acad. Sci. U. S. A. 102, 6320 (2005).
http://dx.doi.org/10.1073/pnas.0405654102
13.
13.H. A. Scheidt, D. Huster, and K. Gawrisch, Biophys. J. 89, 2504 (2005).
http://dx.doi.org/10.1529/biophysj.105.062018
14.
14.T. Harroun, J. Katsaras, and S. Wassall, Biochemistry 45, 1227 (2006).
http://dx.doi.org/10.1021/bi0520840
15.
15.N. Kucerka, D. Marquardt, T. A. Harroun, M.-P. Nieh, S. R. Wassall, and J. Katsaras, J. Am. Chem. Soc. 131, 16358 (2009).
http://dx.doi.org/10.1021/ja907659u
16.
16.S. Jo, H. Rui, J. B. Lim, J. B. Klauda, and W. Im, J. Phys. Chem. B 114, 13342 (2010).
http://dx.doi.org/10.1021/jp108166k
17.
17.H. Sprong, P. van der Sluijs, and G. van Meer, Nat. Rev. Mol. Cell Biol. 2, 504 (2001).
http://dx.doi.org/10.1038/35080071
18.
18.J. Henriksen, A. Rowat, E. Brief, Y. Hsueh, J. Thewalt, M. Zuckermann, and J. Ipsen, Biophys. J. 90, 1639 (2006).
http://dx.doi.org/10.1529/biophysj.105.067652
19.
19.R. S. Gracia, N. Bezlyepkina, R. L. Knorr, R. Lipowsky, and R. Dimova, Soft Matter 6, 1472 (2010).
http://dx.doi.org/10.1039/b920629a
20.
20.R. Dimova, Adv. Colloid Interface Sci. 208, 225 (2014).
http://dx.doi.org/10.1016/j.cis.2014.03.003
21.
21.J. F. Nagle, M. S. Jablin, S. Tristram-Nagle, and K. Akabori, Chem. Phys. Lipids 185, 3 (2015).
http://dx.doi.org/10.1016/j.chemphyslip.2014.04.003
22.
22.O. Berger, O. Edholm, and F. Jahnig, Biophys. J. 72, 2002 (1997).
http://dx.doi.org/10.1016/S0006-3495(97)78845-3
23.
23.J. B. Klauda, R. M. Venable, J. A. Freites, J. W. O’Connor, D. J. Tobias, C. Mondragon-Ramirez, I. Vorobyov, A. D. MacKerell, and R. W. Pastor, J. Phys. Chem. B 114, 7830 (2010).
http://dx.doi.org/10.1021/jp101759q
24.
24.J. P. M. Jambeck and A. P. Lyubartsev, J. Phys. Chem. B 116, 3164 (2012).
http://dx.doi.org/10.1021/jp212503e
25.
25.S. Lee, A. Tran, M. Allsopp, J. B. Lim, J. Henin, and J. B. Klauda, J. Phys. Chem. B 118, 547 (2014).
http://dx.doi.org/10.1021/jp410344g
26.
26.C. Hofsass, E. Lindahl, and O. Edholm, Biophys. J. 84, 2192 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)75025-5
27.
27.M. C. Pitman, F. Suits, A. D. MacKerell, and S. E. Feller, Biochemistry 43, 15318 (2004).
http://dx.doi.org/10.1021/bi048231w
28.
28.W. F. D. Bennett, J. L. MacCallum, M. J. Hinner, S. J. Marrink, and D. P. Tieleman, J. Am. Chem. Soc. 131, 12714 (2009).
http://dx.doi.org/10.1021/ja903529f
29.
29.A. J. Sodt, M. L. Sandar, K. Gawrisch, R. W. Pastor, and E. Lyman, J. Am. Chem. Soc. 136, 725 (2014).
http://dx.doi.org/10.1021/ja4105667
30.
30.R. Goetz and R. Lipowsky, J. Chem. Phys. 108, 7397 (1998).
http://dx.doi.org/10.1063/1.476160
31.
31.J. C. Shelley, M. Y. Shelley, R. C. Reeder, S. Bandyopadhyay, and M. L. Klein, J. Phys. Chem. B 105, 4464 (2001).
http://dx.doi.org/10.1021/jp010238p
32.
32.I. R. Cooke, K. Kremer, and M. Deserno, Phys. Rev. E 72, 011506 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.011506
33.
33.S. Izvekov and G. Voth, J. Phys. Chem. B 109, 2469 (2005).
http://dx.doi.org/10.1021/jp044629q
34.
34.G. Brannigan, L. Lin, and F. Brown, Eur. Biophys. J. Biophys. Lett. 35, 104 (2006).
http://dx.doi.org/10.1007/s00249-005-0013-y
35.
35.S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de Vries, J. Phys. Chem. B 111, 7812 (2007).
http://dx.doi.org/10.1021/jp071097f
36.
36.W. Shinoda, R. Devane, and M. L. Klein, Mol. Simul. 33, 27 (2007).
http://dx.doi.org/10.1080/08927020601054050
37.
37.M. Orsi, D. Y. Haubertin, W. E. Sanderson, and J. W. Essex, J. Phys. Chem. B 112, 802 (2008).
http://dx.doi.org/10.1021/jp076139e
38.
38.T. Murtola, M. Karttunen, and I. Vattulainen, J. Chem. Phys. 131, 055101 (2009).
http://dx.doi.org/10.1063/1.3167405
39.
39.K. R. Hadley and C. McCabe, Biophys. J. 99, 2896 (2010).
http://dx.doi.org/10.1016/j.bpj.2010.08.044
40.
40.R. DeVane, W. Shinoda, P. B. Moore, and M. L. Klein, J. Chem. Theory Comput. 5, 2115 (2009).
http://dx.doi.org/10.1021/ct800441u
41.
41.W. Shinoda, R. DeVane, and M. L. Klein, J. Phys. Chem. B 114, 6836 (2010).
http://dx.doi.org/10.1021/jp9107206
42.
42.S. Jo, J. B. Lim, J. B. Klauda, and W. Im, Biophys. J. 97, 50 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.04.013
43.
43.W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).
http://dx.doi.org/10.1063/1.445869
44.
44.J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, L. Skeel, R. D. Kalé, and K. Schulten, J. Comput. Chem. 26, 1781 (2005).
http://dx.doi.org/10.1002/jcc.20289
45.
45.G. Martyna, D. Tobias, and M. Klein, J. Chem. Phys. 101, 4177 (1994).
http://dx.doi.org/10.1063/1.467468
46.
46.S. E. Feller, Y. Zhang, R. W. Pastor, and B. R. Brooks, J. Chem. Phys. 103, 4613 (1995).
http://dx.doi.org/10.1063/1.470648
47.
47.J. A. Izaguirre, S. Reich, and R. D. Skeel, J. Chem. Phys. 110, 9853 (1999).
http://dx.doi.org/10.1063/1.478995
48.
48.J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. Phys. 23, 327 (1977).
http://dx.doi.org/10.1016/0021-9991(77)90098-5
49.
49.T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).
http://dx.doi.org/10.1063/1.464397
50.
50.U. Essman, L. Perela, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995).
http://dx.doi.org/10.1063/1.470117
51.
51.K. Vanommeslaeghe and A. D. MacKerell, J. Chem. Inf. Model. 52, 3144 (2012).
http://dx.doi.org/10.1021/ci300363c
52.
52.J. B. Lim, B. Rogaski, and J. B. Klauda, J. Phys. Chem. B 116, 203 (2012).
http://dx.doi.org/10.1021/jp207925m
53.
53.S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
54.
54.W. M. Brown, P. Wang, S. J. Plimpton, and A. N. Tharrington, Comput. Phys. Commun. 182, 898 (2011).
http://dx.doi.org/10.1016/j.cpc.2010.12.021
55.
55.S. Nose, Mol. Phys. 52, 255 (1984).
http://dx.doi.org/10.1080/00268978400101201
56.
56.M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).
http://dx.doi.org/10.1063/1.328693
57.
57.W. Shinoda, M. Shiga, and M. Mikami, Phys. Rev. B 69, 134103 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.134103
58.
58.J. W. Eastwood, R. W. Hockney, and D. N. Lawrence, Comput. Phys. Commun. 19, 215 (1980).
http://dx.doi.org/10.1016/0010-4655(80)90052-1
59.
59.M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys. 97, 1990 (1992).
http://dx.doi.org/10.1063/1.463137
60.
60.T. F. Miller, M. Eleftheriou, P. Pattnaik, A. Ndirango, D. Newns, and G. J. Martyna, J. Chem. Phys. 116, 8649 (2002).
http://dx.doi.org/10.1063/1.1473654
61.
61.B. G. Levine, D. N. LeBard, R. DeVane, W. Shinoda, A. Kohlmeyer, and M. L. Klein, J. Chem. Theory Comput. 7, 4135 (2011).
http://dx.doi.org/10.1021/ct2005193
62.
62.D. N. LeBard, B. G. Levine, R. DeVane, W. Shinoda, and M. L. Klein, Chem. Phys. Lett. 522, 38 (2012).
http://dx.doi.org/10.1016/j.cplett.2011.11.075
63.
63.W. Shinoda, R. DeVane, and M. L. Klein, Curr. Opin. Struct. Biol. 22, 175 (2012).
http://dx.doi.org/10.1016/j.sbi.2012.01.011
64.
64.M. L. Klein and W. Shinoda, Science 321, 798 (2008).
http://dx.doi.org/10.1126/science.1157834
65.
65.See supplementary material at http://dx.doi.org/10.1063/1.4937153 for force field parameters, benchmarks and additional order parameter and electon desnity profiles.[Supplementary Material]
66.
66.J. Kastner and W. Thiel, J. Chem. Phys. 123, 144104 (2005).
http://dx.doi.org/10.1063/1.2052648
67.
67.M. Chen, M. A. Cuendet, and M. E. Tuckerman, J. Chem. Phys. 137, 024102 (2012).
http://dx.doi.org/10.1063/1.4733389
68.
68.J. Hénin, G. Fiorin, C. Chipot, and M. L. Klein, J. Chem. Theory Comput. 6, 35 (2010).
http://dx.doi.org/10.1021/ct9004432
69.
69.G. Fiorin, M. L. Klein, and J. Hénin, Mol. Phys. 111, 3345 (2013).
http://dx.doi.org/10.1080/00268976.2013.813594
70.
70.A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. U. S. A. 99, 12562 (2002).
http://dx.doi.org/10.1073/pnas.202427399
71.
71.R. DeVane, A. Jusufi, W. Shinoda, C. C. Chiu, S. O. Nielsen, P. B. Moore, and M. L. Klein, J. Phys. Chem. B 114, 16364 (2010).
http://dx.doi.org/10.1021/jp1070264
72.
72.A. D. MacKerell, D. Bashford, M. Bellot, R. L. Dunbrack, Jr., J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, and S. E. A. Ha, J. Phys. Chem. B 102, 3586 (1998).
http://dx.doi.org/10.1021/jp973084f
73.
73.W. Shinoda, R. DeVane, and M. L. Klein, Soft Matter 7, 6178 (2011).
http://dx.doi.org/10.1039/c1sm05173c
74.
74.R. J. Clarke, Adv. Colloid Interface Sci. 89, 263 (2001).
http://dx.doi.org/10.1016/S0001-8686(00)00061-0
75.
75.L. Martinez, R. Andrade, E. G. Birgin, and J. M. Martinez, J. Comput. Chem. 30, 2157 (2009).
http://dx.doi.org/10.1002/jcc.21224
76.
76.J. P. Douliez, A. Leonard, and E. J. Dufourc, Biophys. J. 68, 1727 (1995).
http://dx.doi.org/10.1016/S0006-3495(95)80350-4
77.
77.W. Haynes, CRC Handbook of Chemistry and Physics, 93rd ed. (Taylor & Francis, 2012).
78.
78.J. J. Jasper, J. Phys. Chem. Ref. Data 1, 841 (1972).
http://dx.doi.org/10.1063/1.3253106
79.
79.W. F. Seyer and C. H. Davenport, J. Am. Chem. Soc. 63, 2425 (1941).
http://dx.doi.org/10.1021/ja01854a031
80.
80.S. Kakinuma and H. Shirota, J. Phys. Chem. B 119, 4713 (2015).
http://dx.doi.org/10.1021/acs.jpcb.5b00460
81.
81.V. T. Lam and G. C. Benson, Can. J. Chem. 48, 3773 (1970).
http://dx.doi.org/10.1139/v70-637
82.
82.F. de Meyer and B. Smit, Proc. Natl. Acad. Sci. U. S. A. 106, 3654 (2009).
http://dx.doi.org/10.1073/pnas.0809959106
83.
83.W.-C. Hung, M.-T. Lee, F.-Y. Chen, and H. W. Huang, Biophys. J. 92, 3960 (2007).
http://dx.doi.org/10.1529/biophysj.106.099234
84.
84.A. R. Braun, E. G. Brandt, O. Edholm, J. F. Nagle, and J. N. Sachs, Biophys. J. 100, 2112 (2011).
http://dx.doi.org/10.1016/j.bpj.2011.03.009
85.
85.O. Edholm and J. F. Nagle, Biophys. J. 89, 1827 (2005).
http://dx.doi.org/10.1529/biophysj.105.064329
86.
86.D. B. Gilbert, C. Tanford, and J. A. Reynolds, Biochemistry 14, 444 (1975).
http://dx.doi.org/10.1021/bi00673a035
87.
87.Z. Zhang, L. Lu, and M. L. Berkowitz, J. Phys. Chem. B 112, 3807 (2008).
http://dx.doi.org/10.1021/jp077735b
88.
88.M. L. Berkowitz, Biochim. Biophys. Acta, Biomembr. 1788, 86 (2009).
http://dx.doi.org/10.1016/j.bbamem.2008.09.009
89.
89.E. Evans, Biophys. J. 43, 27 (1983).
http://dx.doi.org/10.1016/S0006-3495(83)84319-7
90.
90.L. R. Arriaga, I. Lopez-Montero, F. Monroy, G. Orts-Gil, B. Farago, and T. Hellweg, Biophys. J. 96, 3629 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.01.045
91.
91.J. Pan, S. Tristram-Nagle, and J. F. Nagle, Phys. Rev. E 80, 021931 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.021931
92.
92.D. Marsh, Chem. Phys. Lipids 144, 146 (2006).
http://dx.doi.org/10.1016/j.chemphyslip.2006.08.004
93.
93.R. Goetz, G. Gompper, and R. Lipowsky, Phys. Rev. Lett. 82, 221 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.221
94.
94.W. K. den Otter and W. J. Briels, J. Chem. Phys. 118, 4712 (2003).
http://dx.doi.org/10.1063/1.1543941
95.
95.M. C. Watson, E. G. Brandt, P. M. Welch, and F. L. H. Brown, Phys. Rev. Lett. 109, 028102 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.028102
96.
96.M. Hu, P. Diggins, and M. Deserno, J. Chem. Phys. 138, 214110 (2013).
http://dx.doi.org/10.1063/1.4808077
97.
97.S. Kawamoto, T. Nakamura, S. O. Nielsen, and W. Shinoda, J. Chem. Phys. 139, 034108 (2013).
http://dx.doi.org/10.1063/1.4811677
98.
98.Z. A. Levine, R. M. Venable, M. C. Watson, M. G. Lerner, J.-E. Shea, R. W. Pastor, and F. L. H. Brown, J. Am. Chem. Soc. 136, 13582 (2014).
http://dx.doi.org/10.1021/ja507910r
99.
99.W. Helfrich, Z. Naturforsch., C: J. Biosci. 28, 693 (1973).
100.
100.E. G. Brandt, A. R. Braun, J. N. Sachs, J. F. Nagle, and O. Edholm, Biophys. J. 100, 2104 (2011).
http://dx.doi.org/10.1016/j.bpj.2011.03.010
101.
101.N. Kucerka, S. Tristram-Nagle, and J. F. Nagle, J. Membr. Biol. 208, 193 (2005).
http://dx.doi.org/10.1007/s00232-005-7006-8
102.
102.W. Rawicz, K. Olbrich, T. McIntosh, D. Needham, and E. Evans, Biophys. J. 79, 328 (2000).
http://dx.doi.org/10.1016/S0006-3495(00)76295-3
103.
103.M. S. Jablin, K. Akabori, and J. F. Nagle, Phys. Rev. Lett. 113, 248102 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.248102
104.
104.J. Pan, T. T. Mills, S. Tristram-Nagle, and J. F. Nagle, Phys. Rev. Lett. 100, 198103 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.198103
105.
105.D. A. Pantano, P. B. Moore, M. L. Klein, and D. E. Discher, Soft Matter 7, 8182 (2011).
http://dx.doi.org/10.1039/c1sm05490b
106.
106.R. Faller and S.-J. Marrink, Langmuir 20, 7686 (2004).
http://dx.doi.org/10.1021/la0492759
107.
107.A. Radhakrishnan and H. McConnell, Proc. Natl. Acad. Sci. U. S. A. 102, 12662 (2005).
http://dx.doi.org/10.1073/pnas.0506043102
108.
108.H. J. Risselada and S. J. Marrink, Proc. Natl. Acad. Sci. U. S. A. 105, 17367 (2008).
http://dx.doi.org/10.1073/pnas.0807527105
109.
109.S. L. Veatch and S. L. Keller, Biophys. J. 85, 3074 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)74726-2
110.
110.S. R. Wassall and W. Stillwell, Biochim. Biophys. Acta, Biomembr. 1788, 24 (2009).
http://dx.doi.org/10.1016/j.bbamem.2008.10.011
111.
111.M. L. Kraft, Mol. Biol. Cell 24, 2765 (2013).
http://dx.doi.org/10.1091/mbc.E13-03-0165
112.
112.V. Percec, D. A. Wilson, P. Leowanawat, C. J. Wilson, A. D. Hughes, M. S. Kaucher, D. A. Hammer, D. H. Levine, A. J. Kim, F. S. Bates, K. P. Davis, T. P. Lodge, M. L. Klein, R. H. DeVane, E. Aqad, B. M. Rosen, A. O. Argintaru, M. J. Sienkowska, K. Rissanen, S. Nummelin, and J. Ropponen, Science 328, 1009 (2010).
http://dx.doi.org/10.1126/science.1185547
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/24/10.1063/1.4937153
Loading
/content/aip/journal/jcp/143/24/10.1063/1.4937153
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/24/10.1063/1.4937153
2015-12-10
2016-12-08

Abstract

The architecture of a biological membrane hinges upon the fundamental fact that its properties are determined by more than the sum of its individual components. Studies on model membranes have shown the need to characterize in molecular detail how properties such as thickness, fluidity, and macroscopic bending rigidity are regulated by the interactions between individual molecules in a non-trivial fashion. Simulation-based approaches are invaluable to this purpose but are typically limited to short sampling times and model systems that are often smaller than the required properties. To alleviate both limitations, the use of coarse-grained (CG) models is nowadays an established computational strategy. We here present a new CG force field for cholesterol, which was developed by using measured properties of small molecules, and can be used in combination with our previously developed force field for phospholipids. The new model performs with precision comparable to atomistic force fields in predicting the properties of cholesterol-rich phospholipid bilayers, including area per lipid, bilayer thickness, tail order parameter, increase in bending rigidity, and propensity to form liquid-ordered domains in ternary mixtures. We suggest the use of this model to quantify the impact of cholesterol on macroscopic properties and on microscopic phenomena involving localization and trafficking of lipids and proteins on cellularmembranes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/24/1.4937153.html;jsessionid=045gA6QPWphVzfNAUSPVf7mK.x-aip-live-03?itemId=/content/aip/journal/jcp/143/24/10.1063/1.4937153&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/24/10.1063/1.4937153&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/24/10.1063/1.4937153'
Right1,Right2,Right3,