Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/24/10.1063/1.4938083
1.
1.P. Kritzer, “Corrosion in high-temperature and supercritical water and aqueous solutions: A review,” J. Supercrit. Fluids 29(1–2), 129 (2004).
http://dx.doi.org/10.1016/S0896-8446(03)00031-7
2.
2.C. D. Taylor and M. Neurock, “Theoretical insights into the structure and reactivity of the aqueous/metal interface,” Curr. Opin. Solid State Mater. Sci. 9(1–2), 4965 (2005).
http://dx.doi.org/10.1016/j.cossms.2006.03.007
3.
3.G. P. Thiel, “Salty solutions,” Phys. Today 68(6), 6667 (2015).
http://dx.doi.org/10.1063/PT.3.2828
4.
4.J. R. Errington and P. G. Debenedetti, “Relationship between structural order and the anomalies of liquid water,” Nature 409(6818), 318321 (2001).
http://dx.doi.org/10.1038/35053024
5.
5.C. Fennell and K. Dill, “Physical modeling of aqueous solvation,” J. Stat. Phys. 145(2), 209226 (2011).
http://dx.doi.org/10.1007/s10955-011-0232-9
6.
6.J. Israelachvili and H. Wennerstrom, “Role of hydration and water structure in biological and colloidal interactions,” Nature 379(6562), 219225 (1996).
http://dx.doi.org/10.1038/379219a0
7.
7.D. Marx, M. E. Tuckerman, J. Hutter, and M. Parrinello, “The nature of the hydrated excess proton in water,” Nature 397(6720), 601604 (1999).
http://dx.doi.org/10.1038/17579
8.
8.O. Mishima and H. E. Stanley, “The relationship between liquid, supercooled and glassy water,” Nature 396(6709), 329335 (1998).
http://dx.doi.org/10.1038/24540
9.
9.K. Murata et al., “Structural determinants of water permeation through aquaporin-1,” Nature 407(6804), 599605 (2000).
http://dx.doi.org/10.1038/35036519
10.
10.P. Ben Ishai, E. Mamontov, J. D. Nickels, and A. P. Sokolov, “Influence of ions on water diffusion—A neutron scattering study,” J. Phys. Chem. B 117(25), 77247728 (2013).
http://dx.doi.org/10.1021/jp4030415
11.
11.J. S. Kim, Z. Wu, A. R. Morrow, A. Yethiraj, and A. Yethiraj, “Self-diffusion and viscosity in electrolyte solutions,” J. Phys. Chem. B 116(39), 1200712013 (2012).
http://dx.doi.org/10.1021/jp306847t
12.
12.D. Horinek, S. I. Mamatkulov, and R. R. Netz, “Rational design of ion force fields based on thermodynamic solvation properties,” J. Chem. Phys. 130(12), 124507 (2009).
http://dx.doi.org/10.1063/1.3081142
13.
13.P. Jungwirth and D. J. Tobias, “Molecular structure of salt solutions: A new view of the interface with implications for heterogeneous atmospheric chemistry,” J. Phys. Chem. B 105(43), 1046810472 (2001).
http://dx.doi.org/10.1021/jp012750g
14.
14.P. Jungwirth and D. J. Tobias, “Ions at the air/water interface,” J. Phys. Chem. B 106(25), 63616373 (2002).
http://dx.doi.org/10.1021/jp020242g
15.
15.L. Perera and M. L. Berkowitz, “Many-body effects in molecular dynamics simulations of Na+(H2O)n and Cl(H2O)n clusters,” J. Chem. Phys. 95(3), 19541963 (1991).
http://dx.doi.org/10.1063/1.460992
16.
16.L. Perera and M. L. Berkowitz, “Structure and dynamics of Cl(H2O)20 clusters: The effect of the polarizability and the charge of the ion,” J. Chem. Phys. 96(11), 82888294 (1992).
http://dx.doi.org/10.1063/1.462332
17.
17.G. Lamoureux, E. Harder, I. V. Vorobyov, B. Roux, and A. D. MacKerell, Jr., “A polarizable model of water for molecular dynamics simulations of biomolecules,” Chem. Phys. Lett. 418(1–3), 245249 (2006).
http://dx.doi.org/10.1016/j.cplett.2005.10.135
18.
18.S. W. Rick and S. J. Stuart, “Potentials and algorithms for incorporating polarizability in computer simulations,” Rev. Comput. Chem. 18, 89146 (2002).
http://dx.doi.org/10.1002/0471433519.ch3
19.
19.S. W. Rick, S. J. Stuart, and B. J. Berne, “Dynamical fluctuating charge force fields: Application to liquid water,” J. Chem. Phys. 101(7), 61416156 (1994).
http://dx.doi.org/10.1063/1.468398
20.
20.H. Yu et al., “Simulating monovalent and divalent ions in aqueous solution using a drude polarizable force field,” J. Chem. Theory Comput. 6(3), 774786 (2010).
http://dx.doi.org/10.1021/ct900576a
21.
21.Y. Ding, A. A. Hassanali, and M. Parrinello, “Anomalous water diffusion in salt solutions,” Proc. Natl. Acad. Sci. U. S. A. 111(9), 33103315 (2014).
http://dx.doi.org/10.1073/pnas.1400675111
22.
22.M. Soniat, G. Pool, L. Franklin, and S. W. Rick, “Ion association in aqueous solution,” Fluid Phase Equilib. 407, 3138 (2016).
http://dx.doi.org/10.1016/j.fluid.2015.05.001
23.
23.M. Soniat and S. W. Rick, “The effects of charge transfer on the aqueous solvation of ions,” J. Chem. Phys. 137(4), 044511 (2012).
http://dx.doi.org/10.1063/1.4736851
24.
24.M. Soniat and S. W. Rick, “Charge transfer effects of ions at the liquid water/vapor interface,” J. Chem. Phys. 140(18), 184703 (2014).
http://dx.doi.org/10.1063/1.4874256
25.
25.A. J. Lee and S. W. Rick, “The effects of charge transfer on the properties of liquid water,” J. Chem. Phys. 134(18), 184507 (2011).
http://dx.doi.org/10.1063/1.3589419
26.
26.Y. Yao, Y. Kanai, and M. L. Berkowitz, “Role of charge transfer in water diffusivity in aqueous ionic solutions,” J. Phys. Chem. Lett. 5(15), 27112716 (2014).
http://dx.doi.org/10.1021/jz501238v
27.
27.H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, “The missing term in effective pair potentials,” J. Phys. Chem. 91(24), 62696271 (1987).
http://dx.doi.org/10.1021/j100308a038
28.
28.J. Timko, D. Bucher, and S. Kuyucak, “Dissociation of NaCl in water from ab initio molecular dynamics simulations,” J. Chem. Phys. 132(11), 114510 (2010).
http://dx.doi.org/10.1063/1.3360310
29.
29.Z. R. Kann and J. L. Skinner, “A scaled-ionic-charge simulation model that reproduces enhanced and suppressed water diffusion in aqueous salt solutions,” J. Chem. Phys. 141(10), 104507 (2014).
http://dx.doi.org/10.1063/1.4894500
30.
30.M. Kohagen, E. Pluhařová, P. E. Mason, and P. Jungwirth, “Exploring ion–ion interactions in aqueous solutions by a combination of molecular dynamics and neutron scattering,” J. Phys. Chem. Lett. 6(9), 15631567 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00060
31.
31.I. V. Leontyev and A. A. Stuchebrukhov, “Electronic continuum model for molecular dynamics simulations,” J. Chem. Phys. 130(8), 085102 (2009).
http://dx.doi.org/10.1063/1.3060164
32.
32.I. V. Leontyev and A. A. Stuchebrukhov, “Electronic polarizability and the effective pair potentials of water,” J. Chem. Theory Comput. 6(10), 31533161 (2010).
http://dx.doi.org/10.1021/ct1002048
33.
33.I. Leontyev and A. Stuchebrukhov, “Accounting for electronic polarization in non-polarizable force fields,” Phys. Chem. Chem. Phys. 13(7), 26132626 (2011).
http://dx.doi.org/10.1039/c0cp01971b
34.
34.D. Laage and J. T. Hynes, “Reorientional dynamics of water molecules in anionic hydration shells,” Proc. Natl. Acad. Sci. U. S. A. 104(27), 1116711172 (2007).
http://dx.doi.org/10.1073/pnas.0701699104
35.
35.S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117(1), 119 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
36.
36.R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (CRC Press, 1988).
37.
37.J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, “Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes,” J. Comput. Phys. 23(3), 327341 (1977).
http://dx.doi.org/10.1016/0021-9991(77)90098-5
38.
38.W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 3(1(3)), 16951697 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
39.
39.P. Novotny and O. Sohnel, “Densities of binary aqueous solutions of 306 inorganic substances,” J. Chem. Eng. Data 33(1), 4955 (1988).
http://dx.doi.org/10.1021/je00051a018
40.
40.D. Marx and J. Hutter, Ab InitioMolecular Dynamics: Basic Theory and Advanced Methods (Cambridge University Press, 2009).
41.
41.J. Hutter, M. Iannuzzi, F. Schiffmann, and J. VandeVondele, “cp2k: Atomistic simulations of condensed matter systems,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4(1), 1525 (2014).
http://dx.doi.org/10.1002/wcms.1159
42.
42.J. VandeVondele et al., “Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach,” Comput. Phys. Commun. 167(2), 103128 (2005).
http://dx.doi.org/10.1016/j.cpc.2004.12.014
43.
43.Y. Zhang and W. Yang, “Comment on ‘generalized gradient approximation made simple,’” Phys. Rev. Lett. 80(4), 890 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.890
44.
44.J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 38653868 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
45.
45.S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu,” J. Chem. Phys. 132(15), 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
46.
46.H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, “A long-range correction scheme for generalized-gradient-approximation exchange functionals,” J. Chem. Phys. 115(8), 35403544 (2001).
http://dx.doi.org/10.1063/1.1383587
47.
47.Y. Yao and Y. Kanai, “Reptation quantum Monte Carlo calculation of charge transfer: The Na–Cl dimer,” Chem. Phys. Lett. 618, 236240 (2015).
http://dx.doi.org/10.1016/j.cplett.2014.10.002
48.
48.S. Goedecker, M. Teter, and J. Hutter, “Separable dual-space Gaussian pseudopotentials,” Phys. Rev. B 54(3), 17031710 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.1703
49.
49.J. VandeVondele and J. Hutter, “Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases,” J. Chem. Phys. 127(11), 114105 (2007).
http://dx.doi.org/10.1063/1.2770708
50.
50.J. VandeVondele and J. Hutter, “An efficient orbital transformation method for electronic structure calculations,” J. Chem. Phys. 118(10), 43654369 (2003).
http://dx.doi.org/10.1063/1.1543154
51.
51.See supplementary material at http://dx.doi.org/10.1063/1.4938083 for additional computational details.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/24/10.1063/1.4938083
Loading
/content/aip/journal/jcp/143/24/10.1063/1.4938083
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/24/10.1063/1.4938083
2015-12-22
2016-12-10

Abstract

The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The waterdiffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na+ and K+ ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/24/1.4938083.html;jsessionid=ceVu-IdesE0HIDgYSEyoSewx.x-aip-live-06?itemId=/content/aip/journal/jcp/143/24/10.1063/1.4938083&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/24/10.1063/1.4938083&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/24/10.1063/1.4938083'
Right1,Right2,Right3,