Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.P. Kritzer, “Corrosion in high-temperature and supercritical water and aqueous solutions: A review,” J. Supercrit. Fluids 29(1–2), 129 (2004).
2.C. D. Taylor and M. Neurock, “Theoretical insights into the structure and reactivity of the aqueous/metal interface,” Curr. Opin. Solid State Mater. Sci. 9(1–2), 4965 (2005).
3.G. P. Thiel, “Salty solutions,” Phys. Today 68(6), 6667 (2015).
4.J. R. Errington and P. G. Debenedetti, “Relationship between structural order and the anomalies of liquid water,” Nature 409(6818), 318321 (2001).
5.C. Fennell and K. Dill, “Physical modeling of aqueous solvation,” J. Stat. Phys. 145(2), 209226 (2011).
6.J. Israelachvili and H. Wennerstrom, “Role of hydration and water structure in biological and colloidal interactions,” Nature 379(6562), 219225 (1996).
7.D. Marx, M. E. Tuckerman, J. Hutter, and M. Parrinello, “The nature of the hydrated excess proton in water,” Nature 397(6720), 601604 (1999).
8.O. Mishima and H. E. Stanley, “The relationship between liquid, supercooled and glassy water,” Nature 396(6709), 329335 (1998).
9.K. Murata et al., “Structural determinants of water permeation through aquaporin-1,” Nature 407(6804), 599605 (2000).
10.P. Ben Ishai, E. Mamontov, J. D. Nickels, and A. P. Sokolov, “Influence of ions on water diffusion—A neutron scattering study,” J. Phys. Chem. B 117(25), 77247728 (2013).
11.J. S. Kim, Z. Wu, A. R. Morrow, A. Yethiraj, and A. Yethiraj, “Self-diffusion and viscosity in electrolyte solutions,” J. Phys. Chem. B 116(39), 1200712013 (2012).
12.D. Horinek, S. I. Mamatkulov, and R. R. Netz, “Rational design of ion force fields based on thermodynamic solvation properties,” J. Chem. Phys. 130(12), 124507 (2009).
13.P. Jungwirth and D. J. Tobias, “Molecular structure of salt solutions: A new view of the interface with implications for heterogeneous atmospheric chemistry,” J. Phys. Chem. B 105(43), 1046810472 (2001).
14.P. Jungwirth and D. J. Tobias, “Ions at the air/water interface,” J. Phys. Chem. B 106(25), 63616373 (2002).
15.L. Perera and M. L. Berkowitz, “Many-body effects in molecular dynamics simulations of Na+(H2O)n and Cl(H2O)n clusters,” J. Chem. Phys. 95(3), 19541963 (1991).
16.L. Perera and M. L. Berkowitz, “Structure and dynamics of Cl(H2O)20 clusters: The effect of the polarizability and the charge of the ion,” J. Chem. Phys. 96(11), 82888294 (1992).
17.G. Lamoureux, E. Harder, I. V. Vorobyov, B. Roux, and A. D. MacKerell, Jr., “A polarizable model of water for molecular dynamics simulations of biomolecules,” Chem. Phys. Lett. 418(1–3), 245249 (2006).
18.S. W. Rick and S. J. Stuart, “Potentials and algorithms for incorporating polarizability in computer simulations,” Rev. Comput. Chem. 18, 89146 (2002).
19.S. W. Rick, S. J. Stuart, and B. J. Berne, “Dynamical fluctuating charge force fields: Application to liquid water,” J. Chem. Phys. 101(7), 61416156 (1994).
20.H. Yu et al., “Simulating monovalent and divalent ions in aqueous solution using a drude polarizable force field,” J. Chem. Theory Comput. 6(3), 774786 (2010).
21.Y. Ding, A. A. Hassanali, and M. Parrinello, “Anomalous water diffusion in salt solutions,” Proc. Natl. Acad. Sci. U. S. A. 111(9), 33103315 (2014).
22.M. Soniat, G. Pool, L. Franklin, and S. W. Rick, “Ion association in aqueous solution,” Fluid Phase Equilib. 407, 3138 (2016).
23.M. Soniat and S. W. Rick, “The effects of charge transfer on the aqueous solvation of ions,” J. Chem. Phys. 137(4), 044511 (2012).
24.M. Soniat and S. W. Rick, “Charge transfer effects of ions at the liquid water/vapor interface,” J. Chem. Phys. 140(18), 184703 (2014).
25.A. J. Lee and S. W. Rick, “The effects of charge transfer on the properties of liquid water,” J. Chem. Phys. 134(18), 184507 (2011).
26.Y. Yao, Y. Kanai, and M. L. Berkowitz, “Role of charge transfer in water diffusivity in aqueous ionic solutions,” J. Phys. Chem. Lett. 5(15), 27112716 (2014).
27.H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, “The missing term in effective pair potentials,” J. Phys. Chem. 91(24), 62696271 (1987).
28.J. Timko, D. Bucher, and S. Kuyucak, “Dissociation of NaCl in water from ab initio molecular dynamics simulations,” J. Chem. Phys. 132(11), 114510 (2010).
29.Z. R. Kann and J. L. Skinner, “A scaled-ionic-charge simulation model that reproduces enhanced and suppressed water diffusion in aqueous salt solutions,” J. Chem. Phys. 141(10), 104507 (2014).
30.M. Kohagen, E. Pluhařová, P. E. Mason, and P. Jungwirth, “Exploring ion–ion interactions in aqueous solutions by a combination of molecular dynamics and neutron scattering,” J. Phys. Chem. Lett. 6(9), 15631567 (2015).
31.I. V. Leontyev and A. A. Stuchebrukhov, “Electronic continuum model for molecular dynamics simulations,” J. Chem. Phys. 130(8), 085102 (2009).
32.I. V. Leontyev and A. A. Stuchebrukhov, “Electronic polarizability and the effective pair potentials of water,” J. Chem. Theory Comput. 6(10), 31533161 (2010).
33.I. Leontyev and A. Stuchebrukhov, “Accounting for electronic polarization in non-polarizable force fields,” Phys. Chem. Chem. Phys. 13(7), 26132626 (2011).
34.D. Laage and J. T. Hynes, “Reorientional dynamics of water molecules in anionic hydration shells,” Proc. Natl. Acad. Sci. U. S. A. 104(27), 1116711172 (2007).
35.S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117(1), 119 (1995).
36.R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (CRC Press, 1988).
37.J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, “Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes,” J. Comput. Phys. 23(3), 327341 (1977).
38.W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 3(1(3)), 16951697 (1985).
39.P. Novotny and O. Sohnel, “Densities of binary aqueous solutions of 306 inorganic substances,” J. Chem. Eng. Data 33(1), 4955 (1988).
40.D. Marx and J. Hutter, Ab InitioMolecular Dynamics: Basic Theory and Advanced Methods (Cambridge University Press, 2009).
41.J. Hutter, M. Iannuzzi, F. Schiffmann, and J. VandeVondele, “cp2k: Atomistic simulations of condensed matter systems,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4(1), 1525 (2014).
42.J. VandeVondele et al., “Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach,” Comput. Phys. Commun. 167(2), 103128 (2005).
43.Y. Zhang and W. Yang, “Comment on ‘generalized gradient approximation made simple,’” Phys. Rev. Lett. 80(4), 890 (1998).
44.J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 38653868 (1996).
45.S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu,” J. Chem. Phys. 132(15), 154104 (2010).
46.H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, “A long-range correction scheme for generalized-gradient-approximation exchange functionals,” J. Chem. Phys. 115(8), 35403544 (2001).
47.Y. Yao and Y. Kanai, “Reptation quantum Monte Carlo calculation of charge transfer: The Na–Cl dimer,” Chem. Phys. Lett. 618, 236240 (2015).
48.S. Goedecker, M. Teter, and J. Hutter, “Separable dual-space Gaussian pseudopotentials,” Phys. Rev. B 54(3), 17031710 (1996).
49.J. VandeVondele and J. Hutter, “Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases,” J. Chem. Phys. 127(11), 114105 (2007).
50.J. VandeVondele and J. Hutter, “An efficient orbital transformation method for electronic structure calculations,” J. Chem. Phys. 118(10), 43654369 (2003).
51.See supplementary material at for additional computational details.[Supplementary Material]

Data & Media loading...


Article metrics loading...



The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The waterdiffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na+ and K+ ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd