Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/24/10.1063/1.4938260
1.
1.D. T. Amm, S. L. Segel, R. D. Heyding, and B. K. Hunter, J. Chem. Phys. 82, 2529 (1985).
http://dx.doi.org/10.1063/1.448302
2.
2.T. J. Bastow, M. M. Elcombe, and C. J. Howard, Solid State Commun. 57, 339 (1986).
http://dx.doi.org/10.1016/0038-1098(86)90103-1
3.
3.T. J. Bastow, M. M. Elcombe, and C. J. Howard, Solid State Commun. 59, 257 (1986).
http://dx.doi.org/10.1016/0038-1098(86)90403-5
4.
4.B. Mach, H. Jacobs, and W. Schäfer, Z. Anorg. Allg. Chem. 553, 187 (1987).
http://dx.doi.org/10.1002/zaac.19875531022
5.
5.D. M. Adams, A. G. Christy, and J. Haines, J. Phys. Chem. 96, 8173 (1992).
http://dx.doi.org/10.1021/j100199a065
6.
6.M. P. Krobok and W. B. Holzapfel, J. Phys.: Condens. Matter 6, 9789 (1994).
http://dx.doi.org/10.1088/0953-8984/6/45/028
7.
7.J. W. Otto and W. B. Holzapfel, J. Phys.: Condens. Matter 7, 5461 (1995).
http://dx.doi.org/10.1088/0953-8984/7/28/005
8.
8.J. S. Loveday, W. G. Marshall, R. J. Nelmes, S. Klotz, G. Hamel, and J. M. Besson, J. Phys.: Condens. Matter 8, L597 (1996).
http://dx.doi.org/10.1088/0953-8984/8/41/001
9.
9.J. M. Kiat, G. Boemare, B. Rieu, and D. Aymes, Solid State Commun. 108, 241 (1998).
http://dx.doi.org/10.1016/S0038-1098(98)00346-9
10.
10.P. W. R. Bessonette and M. A. White, J. Chem. Phys. 110, 3919 (1999).
http://dx.doi.org/10.1063/1.478246
11.
11.M. Pagliai, M. Iannuzzi, G. Cardini, M. Parrinello, and V. Schettino, ChemPhysChem 7, 141 (2006).
http://dx.doi.org/10.1002/cphc.200500272
12.
12.A. Hermann, N. W. Ashcroft, and R. Hoffmann, J. Chem. Phys. 141, 024505 (2014).
http://dx.doi.org/10.1063/1.4886335
13.
13.R. J. Angel, D. J. Frost, N. L. Ross, and R. Hemley, Phys. Earth Planet. Inter. 127, 181 (2001).
http://dx.doi.org/10.1016/S0031-9201(01)00227-8
14.
14.Q. Williams and R. J. Hemley, Annu. Rev. Earth Planet. Sci. 29, 365 (2001).
http://dx.doi.org/10.1146/annurev.earth.29.1.365
15.
15.R. A. Eggleton, J. N. Boland, and A. E. Ringwood, Geochem. J. 12, 191 (1978).
http://dx.doi.org/10.2343/geochemj.12.191
16.
16.D. G. Pearson, F. E. Brenker, F. Nestola, J. McNeill, L. Nasdala, M. T. Hutchison, S. Matveev, K. Mather, G. Silversmit, S. Schmitz, B. Vekemans, and L. Vincze, Nature 507, 221 (2014).
http://dx.doi.org/10.1038/nature13080
17.
17.B. Schmandt, S. D. Jacobsen, T. W. Becker, Z. Liu, and K. G. Dueker, Science 344, 1265 (2014).
http://dx.doi.org/10.1126/science.1253358
18.
18.E. Stolper, Geochim. Cosmochim. Acta 46, 2609 (1982).
http://dx.doi.org/10.1016/0016-7037(82)90381-7
19.
19.D. R. Bell and G. R. Rossman, Science 255, 1391 (1992).
http://dx.doi.org/10.1126/science.255.5050.1391
20.
20.R. A. Lange, Rev. Mineral. Geochem. 30, 331 (1994), http://rimg.geoscienceworld.org/content/30/1/331.
21.
21.O. Fabelo, J. Pasán, L. Cañadillas Delgado, F. S. Delgado, A. Labrador, F. Lloret, M. Julve, and C. Ruiz-Pérez, CrystEngComm 10, 1743 (2008).
http://dx.doi.org/10.1039/b810605c
22.
22.L.-S. Long, Y.-R. Wu, R.-B. Huang, and L.-S. Zheng, Inorg. Chem. 43, 3798 (2004).
http://dx.doi.org/10.1021/ic0494354
23.
23.P. S. Lakshminarayanan, E. Suresh, and P. Ghosh, Angew. Chem., Int. Ed. 45, 3807 (2006).
http://dx.doi.org/10.1002/anie.200600254
24.
24.B. Sreenivasulu and J. J. Vittal, Angew. Chem., Int. Ed. 43, 5769 (2004).
http://dx.doi.org/10.1002/anie.200460516
25.
25.J. Carrasco, A. Michaelides, M. Forster, S. Haq, R. Raval, and A. Hodgson, Nat. Mater. 8, 427 (2009).
http://dx.doi.org/10.1038/nmat2403
26.
26.L. Lin, J. A. Morrone, and R. Car, J. Stat. Phys. 145, 365 (2011).
http://dx.doi.org/10.1007/s10955-011-0320-x
27.
27.M. Mallary, A. Torabi, and M. Benakli, IEEE Trans. Magn. 38, 1719 (2002).
http://dx.doi.org/10.1109/TMAG.2002.1017762
28.
28.Data Sheet No. DS020-EN-US-0914-01, “Ultrastar 7K6000 Hard Disk Drives” edited by Hitachi Global Storage Technologies (San Jose, CA, USA, 2014), pp. 1–2.
29.
29.White Paper “Blu-ray Disc Format” edited by Blu-ray Disc Association (Universal City, CA, 2012), pp. 1–42.
30.
30. Deuterated reagents were used to produce the sample to avoid the high neutron background scattering which is the result of the large incoherent neutron scattering cross section of the hydrogen nucleus.
31.
31.J. M. Besson, R. J. Nelmes, G. Hamel, J. S. Loveday, G. Weill, and S. Hull, Phys. B: Condens. Matter 180-181, 907 (1992).
http://dx.doi.org/10.1016/0921-4526(92)90505-M
32.
32.R. M. Wilson, J. S. Loveday, R. J. Nelmes, S. Klotz, and W. G. Marshall, Nucl. Instrum. Methods Phys. Res., Sect. A 354, 145 (1995).
http://dx.doi.org/10.1016/0168-9002(94)01038-2
33.
33.A. C. Larson and R. B. Von Dreele, General Structure Analysis System (GSAS), Technical Report 86-748, Los Alamos National Laboratory, 1994.
34.
34.D. C. Lonie and E. Zurek, Comput. Phys. Commun. 182, 372 (2011).
http://dx.doi.org/10.1016/j.cpc.2010.07.048
35.
35.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
36.
36.G. Kresse, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
37.
37.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
38.
38.G. Mills, H. Jónsson, and G. K. Schenter, Surf. Sci. 324, 305 (1995).
http://dx.doi.org/10.1016/0039-6028(94)00731-4
39.
39.See supplementary material at http://dx.doi.org/10.1063/1.4938260 for crystal structure information,pV relations and Bader partial charges.[Supplementary Material]
40.
40.H. P. Beck and G. Lederer, J. Chem. Phys. 98, 7289 (1993).
http://dx.doi.org/10.1063/1.464721
41.
41.Note that in our calculations, we can not model the proton disorder seen in the room-temperature KOH-II phase.
42.
42.A. F. Goncharov, V. V. Struzhkin, H.-k. Mao, and R. J. Hemley, Phys. Rev. Lett. 83, 1998 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1998
43.
43.Y. Bronstein, P. Depondt, F. Finocchi, and A. M. Saitta, Phys. Rev. B 89, 214101 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.214101
44.
44.J. D. Bernal and R. H. Fowler, J. Chem. Phys. 1, 515 (1933).
http://dx.doi.org/10.1063/1.1749327
45.
45.N. Bjerrum, Mat.-Fys. Medd. - K. Dan. Vidensk. Selsk. 27, 1 (1951).
46.
46.K. Aoki, H. Yamawaki, M. Sakashita, and H. Fujihisa, Phys. Rev. B: Condens. Matter 54, 15673 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.15673
47.
47.M. Benoit, A. H. Romero, and D. Marx, Phys. Rev. Lett. 89, 145501 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.145501
48.
48.C. Mailhiot, L. Yang, and A. McMahan, Phys. Rev. B: Condens. Matter 46, 14419 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.14419
49.
49.M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, and R. Boehler, Nat. Mater. 3, 558 (2004).
http://dx.doi.org/10.1038/nmat1146
50.
50.V. Iota, Science 283, 1510 (1999).
http://dx.doi.org/10.1126/science.283.5407.1510
51.
51.M. Amsler, J. Flores-Livas, L. Lehtovaara, F. Balima, S. Ghasemi, D. Machon, S. Pailhès, A. Willand, D. Caliste, S. Botti, A. San Miguel, S. Goedecker, and M. Marques, Phys. Rev. Lett. 108, 065501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.065501
52.
52.C. Pickard and R. Needs, Phys. Rev. Lett. 102, 146401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.146401
53.
53.M.-S. Miao and R. Hoffmann, Acc. Chem. Res. 47, 1311 (2014).
http://dx.doi.org/10.1021/ar4002922
54.
54.J. Sun, M. Martinez-Canales, D. D. Klug, C. J. Pickard, and R. J. Needs, Phys. Rev. Lett. 111, 175502 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.175502
55.
55.A. Hermann, N. W. Ashcroft, and R. Hoffmann, Proc. Natl. Acad. Sci. U. S. A. 109, 745 (2012).
http://dx.doi.org/10.1073/pnas.1118694109
56.
56.R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, Oxford, UK, 1994).
57.
57.A. Hermann and P. Schwerdtfeger, Phys. Rev. Lett. 106, 187403 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.187403
58.
58.D. L. V. K. Prasad, N. W. Ashcroft, and R. Hoffmann, J. Phys. Chem. A 116, 10027 (2012).
http://dx.doi.org/10.1021/jp3078387
59.
59.J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).
http://dx.doi.org/10.1103/PhysRevLett.49.1691
60.
60.M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.5390
61.
61.S. Albrecht, L. Reining, R. Del Sole, and G. Onida, Phys. Rev. Lett. 80, 4510 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4510
62.
62.P. H. Hahn, W. G. Schmidt, K. Seino, M. Preuss, F. Bechstedt, and J. Bernholc, Phys. Rev. Lett. 94, 37404 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.037404
63.
63.A. Hermann, W. G. Schmidt, and P. Schwerdtfeger, Phys. Rev. Lett. 100, 207403 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.207403
64.
64.C. Drechsel-Grau and D. Marx, Phys. Rev. Lett. 112, 148302 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.148302
65.
65.X. Meng, J. Guo, J. Peng, J. Chen, Z. Wang, J.-R. Shi, X.-Z. Li, E.-G. Wang, and Y. Jiang, Nat. Phys. 11, 235 (2015).
http://dx.doi.org/10.1038/nphys3225
66.
66.S. D. Jackson, Nat. Photonics 6, 423 (2012).
http://dx.doi.org/10.1038/nphoton.2012.149
67.
67.Y. Yao, A. J. Hoffman, and C. F. Gmachl, Nat. Photonics 6, 432 (2012).
http://dx.doi.org/10.1038/nphoton.2012.143
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/24/10.1063/1.4938260
Loading
/content/aip/journal/jcp/143/24/10.1063/1.4938260
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/24/10.1063/1.4938260
2015-12-29
2016-12-10

Abstract

Using a combination of crystal structure prediction and neutron diffraction techniques, we have solved the full structure of KOH-VI at 7 GPa. Rather than being orthorhombic and proton-ordered as had previously be proposed, we find that this high-pressure phase of potassium hydroxide is tetragonal (space group 4/) and proton disordered. It has an unusual hydrogen bondtopology, where the hydroxyl groups form isolated hydrogen-bonded square planar (OH) units. This structure is stable above 6.5 GPa and, despite being macroscopically proton-disordered, local ice rules enforce microscopic order of the hydrogen bonds. We suggest the use of this novel type of structure to study concerted proton tunneling in the solid state, while the topology of the hydrogen bond network could conceivably be exploited in data storage applications based solely on the manipulations of hydrogen bonds. The unusual localisation of the hydrogen bond network under applied pressure is found to be favored by a more compact packing of the constituents in a distorted cesium chloride structure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/24/1.4938260.html;jsessionid=x6PwigfGewU0ga-YqAPcry66.x-aip-live-06?itemId=/content/aip/journal/jcp/143/24/10.1063/1.4938260&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/24/10.1063/1.4938260&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/24/10.1063/1.4938260'
Right1,Right2,Right3,