Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/24/10.1063/1.4938562
1.
1.K. Andersson, P. A. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski, J. Phys. Chem. 94, 5483 (1990).
http://dx.doi.org/10.1021/j100377a012
2.
2.G. Ghigo, B. O. Roos, and P. A. Malmqvist, Chem. Phys. Lett. 396, 142 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.08.032
3.
3.C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and J.-P. Malrieu, J. Chem. Phys. 114, 10252 (2001).
http://dx.doi.org/10.1063/1.1361246
4.
4.C. Angeli, R. Cimiraglia, and J.-P. Malrieu, J. Chem. Phys. 117, 9138 (2002).
http://dx.doi.org/10.1063/1.1515317
5.
5.S. R. White and R. L. Martin, J. Chem. Phys. 110, 4127 (1999).
http://dx.doi.org/10.1063/1.478295
6.
6.G. K.-L. Chan and D. Zgid, Annu. Rep. Comput. Chem. 5, 149 (2009).
http://dx.doi.org/10.1016/S1574-1400(09)00507-6
7.
7.D. Zgid and M. Nooijen, J. Chem. Phys. 128, 144116 (2008).
http://dx.doi.org/10.1063/1.2883981
8.
8.Y. Kurashige and T. Yanai, J. Chem. Phys. 130, 234114 (2009).
http://dx.doi.org/10.1063/1.3152576
9.
9.K. H. Marti and M. Reiher, Phys. Chem. Chem. Phys. 13, 6750 (2011).
http://dx.doi.org/10.1039/c0cp01883j
10.
10.P. A. Malmqvist, A. Rendell, and B. O. Roos, J. Phys. Chem. 94, 5477 (1990).
http://dx.doi.org/10.1021/j100377a011
11.
11.P. Å. Malmqvist, K. Pierloot, A. R. M. Shahi, C. J. Cramer, and L. Gagliardi, J. Chem. Phys. 128, 204109 (2008).
http://dx.doi.org/10.1063/1.2920188
12.
12.G. L. Manni, F. Aquilante, and L. Gagliardi, J. Chem. Phys. 134, 034114 (2011).
http://dx.doi.org/10.1063/1.3532927
13.
13.G. L. Manni, D. Ma, F. Aquilante, J. Olsen, and L. Gagliardi, J. Chem. Theory Comput. 9, 3375 (2013).
http://dx.doi.org/10.1021/ct400046n
14.
14.D. Ma, G. L. Manni, and L. Gagliardi, J. Chem. Phys. 135, 044128 (2011).
http://dx.doi.org/10.1063/1.3611401
15.
15.K. D. Vogiatzis, G. L. Manni, S. J. Stoneburner, D. Ma, and L. Gagliardi, J. Chem. Theory Comput. 11, 3010 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00191
16.
16.J. Gräfenstein and D. Cremer, Chem. Phys. Lett. 316, 569 (2000).
http://dx.doi.org/10.1016/S0009-2614(99)01326-3
17.
17.J. Gräfenstein and D. Cremer, Mol. Phys. 103, 279 (2005).
http://dx.doi.org/10.1080/00268970512331318858
18.
18.R. Pollet, A. Savin, T. Leininger, and H. Stoll, J. Chem. Phys. 116, 1250 (2002).
http://dx.doi.org/10.1063/1.1430739
19.
19.G. L. Manni, R. K. Carlson, S. Luo, D. Ma, J. Olsen, D. G. Truhlar, and L. Gagliardi, J. Chem. Theory Comput. 10, 3669 (2014).
http://dx.doi.org/10.1021/ct500483t
20.
20.R. K. Carlson, D. G. Truhlar, and L. Gagliardi, J. Chem. Theory Comput. 11, 4077 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00609
21.
21.A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
http://dx.doi.org/10.1103/RevModPhys.68.13
22.
22.G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. Marianetti, Rev. Mod. Phys. 78, 865 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.865
23.
23.G. Kotliar and D. Vollhardt, Phys. Today 57(3), 53 (2004).
http://dx.doi.org/10.1063/1.1712502
24.
24.K. Held, Adv. Phys. 56, 829 (2007).
http://dx.doi.org/10.1080/00018730701619647
25.
25.F. Lechermann, A. Georges, A. Poteryaev, S. Biermann, M. Posternak, A. Yamasaki, and O. Andersen, Phys. Rev. B 74, 125120 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.125120
26.
26.A. I. Lichtenstein, M. I. Katsnelson, and G. Kotliar, Phys. Rev. Lett. 87, 067205 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.067205
27.
27.X. Ren, I. Leonov, G. Keller, M. Kollar, I. Nekrasov, and D. Vollhardt, Phys. Rev. B 74, 195114 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.195114
28.
28.J. Lee and K. Haule, Phys. Rev. B 91, 155144 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.155144
29.
29.D. Boukhvalov, L. Vergara, V. Dobrovitski, M. Katsnelson, A. Lichtenstein, P. Kögerler, J. Musfeldt, and B. Harmon, Phys. Rev. B 77, 180402 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.180402
30.
30.C. Weber, D. J. Cole, D. D. O’Regan, and M. C. Payne, Proc. Natl. Acad. Sci. U. S. A. 111, 5790 (2014).
http://dx.doi.org/10.1073/pnas.1322966111
31.
31.C. Weber, D. D. O’Regan, N. D. Hine, P. B. Littlewood, G. Kotliar, and M. C. Payne, Phys. Rev. Lett. 110, 106402 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.106402
32.
32.J. Chen, A. J. Millis, and C. A. Marianetti, Phys. Rev. B 91, 241111 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.241111
33.
33.H. Park, A. J. Millis, and C. A. Marianetti, Phys. Rev. B 92, 035146 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.035146
34.
34.L. Vaugier, H. Jiang, and S. Biermann, Phys. Rev. B 86, 165105 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.165105
35.
35.S. Biermann, F. Aryasetiawan, and A. Georges, Phys. Rev. Lett. 90, 086402 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.086402
36.
36.J. M. Tomczak, M. Casula, T. Miyake, F. Aryasetiawan, and S. Biermann, EPL 100, 67001 (2012).
http://dx.doi.org/10.1209/0295-5075/100/67001
37.
37.M. Kitatani, N. Tsuji, and H. Aoki, Phys. Rev. B 92, 085104 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.085104
38.
38.A. A. Kananenka, E. Gull, and D. Zgid, Phys. Rev. B 91, 121111 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.121111
39.
39.J. J. Phillips and D. Zgid, J. Chem. Phys. 140, 241101 (2014).
http://dx.doi.org/10.1063/1.4884951
40.
40.J. J. Phillips, A. A. Kananenka, and D. Zgid, J. Chem. Phys. 142, 194108 (2015).
http://dx.doi.org/10.1063/1.4921259
41.
41.D. Zgid and G. K.-L. Chan, J. Chem. Phys. 134, 094115 (2011).
http://dx.doi.org/10.1063/1.3556707
42.
42.F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 73 (2012).
http://dx.doi.org/10.1002/wcms.81
43.
43.K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle et al., Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4, 269 (2014).
http://dx.doi.org/10.1002/wcms.1172
44.
44.D. Zgid, E. Gull, and G. K.-L. Chan, Phys. Rev. B 86, 165128 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.165128
45.
45.T. Dunning, J. Chem. Phys. 55, 716 (1971).
http://dx.doi.org/10.1063/1.1676139
46.
46.S. M. Parker, T. Seideman, M. A. Ratner, and T. Shiozaki, J. Chem. Phys. 139, 021108 (2013).
http://dx.doi.org/10.1063/1.4813827
47.
47.W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972).
http://dx.doi.org/10.1063/1.1677527
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/24/10.1063/1.4938562
Loading
/content/aip/journal/jcp/143/24/10.1063/1.4938562
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/24/10.1063/1.4938562
2015-12-23
2016-12-04

Abstract

The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical Hamiltonians for applications to molecular systems. The self-consistent second-order Green’s function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to -electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/24/1.4938562.html;jsessionid=dLpAMdnrGP5M48FTOSLjYgVb.x-aip-live-03?itemId=/content/aip/journal/jcp/143/24/10.1063/1.4938562&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/24/10.1063/1.4938562&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/24/10.1063/1.4938562'
Right1,Right2,Right3,