Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/24/10.1063/1.4939011
1.
1.J. M. Bofill, J. Chem. Phys. 143, 247101 (2015).
http://dx.doi.org/10.1063/1.4939009
2.
2.F. Branin, IBM J. Res. Dev. 16, 504 (1972).
http://dx.doi.org/10.1147/rd.165.0504
3.
3.F. H. Branin and S. K. Hoo, “A method for finding multiple extrema of a function of n variables,” in Numerical Methods of Nonlinear Optimization (Academic, 1972), pp. 231237.
4.
4.S. Smale, J. Math. Econ. 3, 107 (1976).
http://dx.doi.org/10.1016/0304-4068(76)90019-7
5.
5.I. Diener, Math. Program. 36, 340 (1986).
http://dx.doi.org/10.1007/BF02592065
6.
6.M. Hirsch and W. Quapp, J. Math. Chem. 36, 307 (2004).
http://dx.doi.org/10.1023/B:JOMC.0000044520.03226.5f
7.
7.I. Diener, “Globale Aspekte des kontinuierlichen Newtonverfahrens,” Habilitation thesis, Göttingen, 1991.
8.
8.H. B. Keller, in Recent Advances in Numerical Analysis, edited by C. D. Boor and G. H. Golub (University of Wisconsin-Madison, 1978).
9.
9.E. L. Allgower and K. Georg, Acta Numer. 2, 1 (1993).
http://dx.doi.org/10.1017/S0962492900002336
10.
10.E. Allgower and K. Georg, Introduction to Numerical Continuation Methods (Society for Industrial and Applied Mathematics, 2003), Vol. 45.
11.
11.I. Diener and R. Schaback, J. Optim. Theory Appl. 67, 57 (1990).
http://dx.doi.org/10.1007/BF00939735
12.
12.I. Diener, Parametric Optimization and Related Topics III (Peter Lang Verlagsgruppe, Frankfurt, 1993).
13.
13.I. Diener, in Handbook of Global Optimization, Nonconvex Optimization and Its Applications, edited by R. Horst and P. M. Pardalos Vol. 2 (Springer, USA, 1995), pp. 649668.
14.
14.W. Quapp, J. Theor. Comput. Chem. 02, 385 (2003).
http://dx.doi.org/10.1142/S0219633603000604
15.
15.W. Quapp, J. Mol. Struct. 695–696, 95 (2004).
http://dx.doi.org/10.1016/j.molstruc.2003.10.034
16.
16.J. M. Bofill and W. Quapp, J. Chem. Phys. 134, 074101 (2011).
http://dx.doi.org/10.1063/1.3554214
17.
17.W. Quapp, M. Hirsch, O. Imig, and D. Heidrich, J. Comput. Chem. 19, 1087 (1998).
http://dx.doi.org/10.1002/(SICI)1096-987X(19980715)19:9<1087::AID-JCC9>3.0.CO;2-M
18.
18.W. Quapp, M. Hirsch, and D. Heidrich, Theor. Chem. Acc. 100, 285 (1998).
http://dx.doi.org/10.1007/s002140050389
19.
19.C. B. Garcia and F. J. Gould, Math. Oper. Res. 3, 282 (1978).
http://dx.doi.org/10.1287/moor.3.4.282
20.
20.C. Garcia and F. Gould, SIAM Rev. 22, 263 (1980).
http://dx.doi.org/10.1137/1022055
21.
21.D. Mehta, T. Chen, J. W. R. Morgan, and D. J. Wales, J. Chem. Phys. 142, 194113 (2015).
http://dx.doi.org/10.1063/1.4921163
22.
22.D. Mehta, T. Chen, J. D. Hauenstein, and D. J. Wales, J. Chem. Phys. 141, 121104 (2014).
http://dx.doi.org/10.1063/1.4896657
23.
23.R. Kellogg, T.-Y. Li, and J. A. Yorke, SIAM J. Numer. Anal. 13, 473 (1976).
http://dx.doi.org/10.1137/0713041
24.
24.R. Crehuet, J. M. Bofill, and J. M. Anglada, Theor. Chem. Acc. 107, 130 (2002).
http://dx.doi.org/10.1007/s00214-001-0306-x
25.
25.E. L. Allgower and K. Georg, Numerical Continuation Methods: An Introduction (Springer-Verlag, 1990).
26.
26.S. Ackermann and W. Kliesch, Theor. Chem. Acc. 99, 255 (1998).
http://dx.doi.org/10.1007/s002140050334
27.
27.W. Hao, J. D. Hauenstein, B. Hu, Y. Liu, A. J. Sommese, and Y.-T. Zhang, Nonlinear Anal.: Real World Appl. 13, 694 (2012).
http://dx.doi.org/10.1016/j.nonrwa.2011.08.010
28.
28.T.-Y. Li and X. Wang, Appl. Math. Comput. 64, 155 (1994).
http://dx.doi.org/10.1016/0096-3003(94)90060-4
29.
29.P. Valtazanos and K. Ruedenberg, Theor. Chim. Acta 69, 281 (1986).
http://dx.doi.org/10.1007/BF00527705
30.
30.J. González, X. Giménez, and J. M. Bofill, J. Chem. Phys. 116, 8713 (2002).
http://dx.doi.org/10.1063/1.1472514
31.
31.W. Quapp, J. Mol. Struct. 695, 95 (2004).
http://dx.doi.org/10.1016/j.molstruc.2003.10.034
32.
32.S. M. Avdoshenko and D. E. Makarov, “Reaction coordinates and pathways of mechanochemical transformations,” J. Phys. Chem. B (published online).
http://dx.doi.org/10.1021/acs.jpcb.5b07613
33.
33.A. J. Sommese and C. W. Wampler, The Numerical Solution of Systems of Polynomials Arising in Engineering and Science (World Scientific, 2005), Vol. 99.
34.
34.J. D. Hauenstein, I. Haywood, and A. C. Liddell, Jr., in Proceedings of the 39th ISSAC (ACM, 2014), pp. 248255.
35.
35.D. Mehta, J. D. Hauenstein, and D. J. Wales, J. Chem. Phys. 138, 171101 (2013).
http://dx.doi.org/10.1063/1.4803162
36.
36.D. Mehta, J. D. Hauenstein, and D. J. Wales, J. Chem. Phys. 140, 224114 (2014).
http://dx.doi.org/10.1063/1.4881638
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/24/10.1063/1.4939011
Loading
/content/aip/journal/jcp/143/24/10.1063/1.4939011
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/24/10.1063/1.4939011
2015-12-30
2016-09-30

Abstract

The comment notes that the Newton homotopy (NH) and Newton trajectory (NT) methods are related. By describing recent implementations of the NH method, we clarify the similarities and differences between the two approaches. The possible synergy between NH, NT and other flow methods could suggest further developments in mathematics and chemistry.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/24/1.4939011.html;jsessionid=vZk58V44fUF7X8xn4PwW9RhV.x-aip-live-06?itemId=/content/aip/journal/jcp/143/24/10.1063/1.4939011&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/24/10.1063/1.4939011&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/24/10.1063/1.4939011'
Right1,Right2,Right3,