Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/24/10.1063/1.4939248
1.
1.V. Singh et al., Prog. Mater. Sci. 56, 1178 (2011).
http://dx.doi.org/10.1016/j.pmatsci.2011.03.003
2.
2.T. Kuilla et al., Prog. Polym. Sci. 35, 1350 (2010).
http://dx.doi.org/10.1016/j.progpolymsci.2010.07.005
3.
3.S. M. Chen et al., Int. J. Electrochem. Sci. 9, 4072 (2014).
4.
4.Q. B. Zheng et al., Prog. Mater. Sci. 64, 200 (2014).
http://dx.doi.org/10.1016/j.pmatsci.2014.03.004
5.
5.Y. J. Shin et al., Langmuir 26, 3798 (2010).
http://dx.doi.org/10.1021/la100231u
6.
6.S. Lebegue et al., Phys. Rev. Lett. 105, 196401 (2010).
http://dx.doi.org/10.1103/physrevlett.105.196401
7.
7.B. A. Krajina, L. S. Kocherlakota, and R. M. Overney, J. Chem. Phys. 141, 164707 (2014).
http://dx.doi.org/10.1063/1.4898799
8.
8.Z. Li et al., Nat. Mater. 12, 925 (2013).
http://dx.doi.org/10.1038/nmat3709
9.
9.T. Gould, S. Lebegue, and J. F. Dobson, J. Phys.: Condens. Matter 25, 445010 (2013).
http://dx.doi.org/10.1088/0953-8984/25/44/445010
10.
10.J. N. Israelachvili, Intermolecular and Surface Forces, 3rd ed. (Academic Press, 2011).
11.
11.K. S. Novoselov et al., Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).
http://dx.doi.org/10.1073/pnas.0502848102
12.
12.D. Graf et al., Nano Lett. 7, 238 (2007).
http://dx.doi.org/10.1021/nl061702a
13.
13.S. Sills and R. M. Overney, Phys. Rev. Lett. 91, 095501 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.095501
14.
14.D. B. Knorr, T. O. Gray, and R. M. Overney, Ultramicroscopy 109, 991 (2009).
http://dx.doi.org/10.1016/j.ultramic.2009.03.003
15.
15.J. D. Ferry, Viscoelastic Properties of Polymers (John Wiley & Sons, 1980).
16.
16.I. M. Ward, Mechanical Properties of Solid Polymers (Wiley Interscience, London, 1971).
17.
17.D. M. Lipkin, J. N. Israelachvili, and D. R. Clarke, Philos. Mag. A 76, 715 (1997).
http://dx.doi.org/10.1080/01418619708214205
18.
18.A. B. Djurisic and E. H. Li, J. Appl. Phys. 85, 7404 (1999).
http://dx.doi.org/10.1063/1.369370
19.
19.K. S. Novoselov et al., Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
20.
20.S. Cheon et al., Opt. Lett. 37, 3765 (2012).
http://dx.doi.org/10.1364/OL.37.003765
21.
21.C. J. Shih et al., Phys. Rev. Lett. 109, 176101 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.176101
22.
22.T. Ohta et al., Phys. Rev. Lett. 98, 206802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.206802
23.
23.V. B. Jovanovic, I. Radovic, and D. Borka, Phys. Rev. B 84, 155416 (2011).
http://dx.doi.org/10.1103/physrevb.84.155416
24.
24.R. Podgornik, R. H. French, and V. A. Parsegian, J. Chem. Phys. 124, 044709 (2006).
http://dx.doi.org/10.1063/1.2150825
25.
25.K.-S. Kim et al., ACS Nano 5, 5107 (2011).
http://dx.doi.org/10.1021/nn2011865
26.
26.R. Raj, S. C. Maroo, and E. N. Wang, Nano Lett. 13, 1509 (2013).
http://dx.doi.org/10.1021/nl304647t
27.
27.H. Zhou et al., J. Am. Chem. Soc. 132, 944 (2010).
http://dx.doi.org/10.1021/ja909228n
28.
28.C.-W. Huang et al., Nanoscale Res. Lett. 7, 618 (2012).
http://dx.doi.org/10.1186/1556-276X-7-618
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/24/10.1063/1.4939248
Loading
/content/aip/journal/jcp/143/24/10.1063/1.4939248
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/24/10.1063/1.4939248
2015-12-30
2016-12-06

Abstract

Recent advances in scanning probe methods that provide direct access to the surfacefree energy of inorganic layered materials in terms of the Hamaker constant yield energetic values for monolayergraphene that differ substantially, by a factor of around 0.4, from bulk graphite. The onset of bulk deviating energy values was observed at a multilayer slab thickness of ∼3 nm, corresponding to a layer number of 10. The findings, complemented with extractions from water contact angle measurements and calculated interlayer binding energies, find short-range ordinary van der Waals interactions to be most prominently affected by dimensional constraints and many-body interactions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/24/1.4939248.html;jsessionid=Gk6r3nHLH2mdHaGeZmGorf_a.x-aip-live-02?itemId=/content/aip/journal/jcp/143/24/10.1063/1.4939248&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/24/10.1063/1.4939248&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/24/10.1063/1.4939248'
Right1,Right2,Right3,