Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/4/10.1063/1.4927140
1.
1.G. Booth, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, Weinheim, Germany, 2007).
2.
2.J. Tremp, P. Mattrel, S. Fingler, and W. Giger, Water, Air, Soil Pollut. 68, 113 (1993).
http://dx.doi.org/10.1007/BF00479396
3.
3.A. White, P. Handler, and E. L. Smith, Principles of Biochemistry, 5th ed. (McGraw-Hill, New York, 1973), p. 367.
4.
4.Z. Kozarac, A. Dhathathreyan, and D. Möbius, Colloid Polym. Sci. 267, 722 (1989).
http://dx.doi.org/10.1007/BF01524375
5.
5.Z. Kozarac, B. Cosović, and B. Gaśparović, Langmuir 7, 1076 (1991).
http://dx.doi.org/10.1021/la00054a009
6.
6.Z. Kozarac and D. Möbius, Colloids Surf., A 83(2), 99 (1994).
http://dx.doi.org/10.1016/0927-7757(94)80093-6
7.
7.P. Coppens and G. M. Schmidt, Acta Crystallogr. 18, 62 (1965).
http://dx.doi.org/10.1107/S0365110X65000117
8.
8.F. Iwasaki and Y. Kawano, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 38, 1286 (1978).
http://dx.doi.org/10.1107/S0567740878005361
9.
9.Y. Xiang, T. C. An, C. He, Y. Liu, J. Chen, C. Zha, H. Karlsson, and X. M. Chen, J. Chem. Crystallogr. 32(8), 219 (2002).
http://dx.doi.org/10.1023/a:1020292821315
10.
10.K. B. Borisenko, C. W. Bock, and I. Hargittal, J. Phys. Chem. 98, 1442 (1994).
http://dx.doi.org/10.1021/j100056a012
11.
11.N. Heineking and H. Dreizler, Ber. Bunsengesellschaft Phys. Chem. 97, 663 (1993).
http://dx.doi.org/10.1002/bbpc.19930970504
12.
12.L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, N.Y., USA, 1973), p. 264.
13.
13.C. J. M. Stirling, Acc. Chem. Res. 12(6), 198 (1979).
http://dx.doi.org/10.1021/ar50138a002
14.
14.The Merck Index, 13th ed. (Merck & Co, Inc., Whitehouse Station, New Jersey, 2001), pp. 66536654.
15.
15.C. F. Baes, Jr. and R. E. Mesmer, The Hydrolysis of Cations (John Wiley and Sons, New York, 1976).
16.
16.F. G. R. Gimblett, Inorganic Polymer Chemistry (Butterworth, London, 1963).
17.
17.J. A. Potton, G. J. Daniel, and B. D. Rainford, J. Appl. Crystallogr. 21, 663 (1988).
http://dx.doi.org/10.1107/s0021889888004819
18.
18.C. A. Faunce and H. H. Paradies, J. Phys. Chem. B 118, 800 (2014).
http://dx.doi.org/10.1021/jp408282x
19.
19.See supplementary material at http://dx.doi.org/10.1063/1.4927140 for S1: General chemistry, chemical composition; S2: Small- and wide-angle X-Ray scattering; S3: SEM images; S4: Crystallographic data for the 2-NP-Me+ molecular materials; S5: Crystallographic data and refinement ofo-nitrophenol (2-nitrophenol); S6: References.[Supplementary Material]
20.
20.E. J. Conway and E. O’Malley, Biochem. J. 36, 655 (1942).
21.
21.C. A. Faunce, H. Reichelt, and H. H. Paradies, J. Chem. Phys. 134, 104902 (2011).
http://dx.doi.org/10.1063/1.3553809
22.
22.Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, Toxicological Profile for Nitrophenols: 2-Nitrophenol, 4-Nitrophenol, July 1992.
23.
23.Sigma-Aldrich Catalogue, N 9256, Materials Safety Data Sheet Version 5.0 from November 16, pp. 1–7; equivalent EG # 1907.
24.
24.C. A. Faunce and H. H. Paradies, J. Phys. Chem. B 116, 12992 (2012).
http://dx.doi.org/10.1021/jp306632q
25.
25.A. Guinier, Ann. Phys. 12, 161 (1939).
26.
26.T. Zemb and P. Chapin, J. Phys. 46, 249 (1985).
http://dx.doi.org/10.1051/jphys:01985004602024900
27.
27.L. Aggerbeck, M. Yates, A. Tardieu, and V. Luzzati, J. Appl. Crystallogr. 11, 466 (1978).
http://dx.doi.org/10.1107/S0021889878013606
28.
28.J.-P. Hansen and L. R. McDonald, Theory of Simple Liquids (Academic Press, New York, 2007).
29.
29.J. Chang, P. Lesieur, M. Delsanti, L. Belloni, C. Bonnet-Gonnet, and B. Cabane, J. Phys. Chem. 99, 15993 (1995).
http://dx.doi.org/10.1021/j100043a045
30.
30.J.-P. Hansen and J. B. Hayter, Mol. Phys. 46, 651 (1982).
http://dx.doi.org/10.1080/00268978200101471
31.
31.J. P. G. Richards, Z. Kristallogr. 116, 468 (1961).
http://dx.doi.org/10.1524/zkri.1961.116.3-6.468
32.
32.H. Reichelt, C. A. Faunce, and H. H. Paradies, J. Phys. Chem. A 111, 2587 (2007).
http://dx.doi.org/10.1021/jp068599y
33.
33.(a) G. M. Sheldrick and SHELX S86, in Crystallographic Computing 3, To Solve Structure, SHELX S87, to Refine Structure, SHELXL 97, edited by G. M. Sheldrick, C. Kruger, and R. Goddard (Oxford University Press, Oxford, U.K., 1985), pp. 175189;
33.(b) P. Müller, R. Herbst-Irmer, A. L. Spek, T. R. Schneider, and M. R. Sawaya, Crystal Structure Refinement; A Crystallographer’s Guide to SHELXL (Oxford University Press, Oxford U.K, 2006).
34.
34.(a) C. J. Gilmore, J. Appl. Cryst. 17, 42 (1984);
http://dx.doi.org/10.1107/S0021889884010992
34.(b) J. A. Ibers and W. C. Hamilton, Acta Crystallogr. 17, 781 (1964).
http://dx.doi.org/10.1107/S0365110X64002067
35.
35.P. T. Beurskens, Technical Report Crystallography Laboratory, Toernooiveld, 6525 Ed Nijmegen, Netherlands (1984/1).
36.
36.D. T. Cromer and J. T. Waber, in International Tables for X-Ray Crystallography (The Kynoch Press, Birmingham, England, 1974), Vol. IV , Tables 2.2A and 2.3.1.
37.
37.G. Scatchard, A. C. Batchelder, and A. Brown, J. Am. Chem. Soc. 68, 2320 (1946).
http://dx.doi.org/10.1021/ja01215a055
38.
38.J. H. Nixon and M. Silbert, J. Phys. C: Solid State Phys. 7, L 175 (1982).
http://dx.doi.org/10.1088/0022-3719/15/7/001
39.
39.O. Glatter, in Small Angel X-Ray Scattering, edited by O. Glatter and O. Kratky (Academic Press, New York, 1982), Chap. 4, pp. 114-165.
40.
40.W. R. Smith, D. Henderson, and Y. Tago, J. Chem. Phys. 67, 5308 (1977).
http://dx.doi.org/10.1063/1.434709
41.
41.S. Alexander, P. M. Chaikin, P. Grant, G. J. Morales, P. Pincus, and D. Hone, J. Chem. Phys. 80, 5776 (1984).
http://dx.doi.org/10.1063/1.446600
42.
42.F. J. Rogers and D. A. Young, Phys. Rev. A 30, 999 (1984).
http://dx.doi.org/10.1103/PhysRevA.30.999
43.
43.F. H. Stillinger and R. Lovett, J. Chem. Phys. 48, 3858 (1968).
http://dx.doi.org/10.1063/1.1669709
44.
44.L. Blum, C. Gruber, J. L. Lebowitz, and P. M. Martin, Phys. Rev. Lett. 48, 1769 (1982).
http://dx.doi.org/10.1103/physrevlett.48.1769
45.
45.H. V. R. Annapureddy, H. K. Kashyap, P. M. De Biase, and C. J. Margulis, J. Phys. Chem. B 114, 16838 (2010).
http://dx.doi.org/10.1021/jp108545z
46.
46.C. S. Santos, N. S. Murthy, G. A. Baker, and E. W. Castner, Jr., J. Chem. Phys. 134, 121101 (2011).
http://dx.doi.org/10.1063/1.3569131
47.
47.J. J. Hettige, H. K. Kashyap, and C. J. Margulis, J. Chem. Phys. 140, 111102 (2014).
http://dx.doi.org/10.1063/1.4867900
48.
48.T. Hahn, U. Shmueli, A. A. J. C. Wilson, and E. Prince, International Tables for Crystallography (D. Reidel Publishing Company, Dordrecht, Netherlands, 2005).
49.
49.E. C. Lorch, J. Phys. C: Solid State Phys. 2, 229 (1969).
http://dx.doi.org/10.1088/0022-3719/2/2/305
50.
50.J. Du, C. J. Benmore, R. Corrales, R. T. Hart, and J. K. R. Weber, J. Phys.: Condens. Matter 21, 205102 (2009).
http://dx.doi.org/10.1088/0953-8984/21/20/205102
51.
51.J.-P. Hansen and L. Verlet, Phys. Rev. 184, 151-161 (1969).
http://dx.doi.org/10.1103/physrev.184.151
52.
52.A. Guinier and G. Fournet, Small Angle Scattering of X-Rays (John Wiley, New York, 1955).
53.
53.J. M. Schultz, J. Polym. Sci. Phys. 14, 2291 (1976).
http://dx.doi.org/10.1002/pol.1976.180141214
54.
54.J. Dlugosz, G. V. Fraser, D. Grubb, A. Keller, A. Odell, and P. L. Goggin, Polymer 17, 471 (1976).
http://dx.doi.org/10.1016/0032-3861(76)90125-7
55.
55.(a) A. C. Larson and R. B. von Dreele, “GSAS system,” Los Alamos (NM), Report LAUR 86–748, 2000;
55.(b) J. Rodriguez-Carvajal, Physica B 192, 55 (1993).
http://dx.doi.org/10.1016/0921-4526(93)90108-i
56.
56.M. A. Neumann, J. Appl. Cryst 36, 356 (2003).
http://dx.doi.org/10.1107/S0021889802023348
57.
57.D. B. Wiles and R. A. Young, J. Appl. Crystallogr. 14, 149 (1981).
http://dx.doi.org/10.1107/S0021889881008996
58.
58.BIOVIA Materials Studio, version 8.0, BIOVIA, San Diego, CA, USA, 2014.
59.
59.F. A. Cotton, Advanced Inorganic Chemistry, Concepts in Stereochemistry and Bonding, 5th ed. (Wiley Interscience, New York, 1988), pp. 334.
60.
60.G. R. Desiraju and A. Gavezzotti, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 45, 473 (1989).
http://dx.doi.org/10.1107/S0108768189003794
61.
61.G. R. Desiraju and A. Gavezzotti, Chem. Commun. 1989(10), 621 (1989).
http://dx.doi.org/10.1039/c39890000621
62.
62.M. L. Glówka, D. Martynowski, and K. Kozłowska, J. Mol. Struct. 474, 81 (1999).
http://dx.doi.org/10.1016/s0022-2860(98)00562-6
63.
63.F. Habben and H. H. Paradies, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 49, 744 (1993).
http://dx.doi.org/10.1107/s010827019201179x
64.
64.(a) R. H. Pearson and I. Pascher, Nature 281, 499 (1979);
http://dx.doi.org/10.1038/281499a0
64.(b) H. Hauser, I. Pascher, and S. Sundell, J. Mol. Biol. 137, 249 (1980).
http://dx.doi.org/10.1016/0022-2836(80)90315-0
65.
65.H. M. M. Shearer and V. Vand, Acta Crystallogr. 9, 379 (1956).
http://dx.doi.org/10.1107/S0365110X5600111X
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/4/10.1063/1.4927140
Loading
/content/aip/journal/jcp/143/4/10.1063/1.4927140
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/4/10.1063/1.4927140
2015-07-27
2016-12-11

Abstract

The materials studied in this investigation were aqueous solutions (0.02-25.0 mM) of the salts of alkali metal ion (Me+) and 2-nitrophenol (2-NP). In the investigation, small-angle X-ray scattering, wide-angle X-ray scattering, and membrane-pressure osmometry were used to study the 2-NP-Me+ molecular salt structures and the onset of crystallization as a function of concentration and temperature. The experimental methods used to examine the 2-NP-Me+ molecular salt complexes provided corroborative evidence for the existence of spherical clusters with hydrodynamic diameters between ∼12 Å (Li) and 14 Å (Cs). Guinier plots of the zero-angle scattering peak were characteristic of the scattering from lamellae-like shapes with thicknesses of ∼290 Å. Tetramer and pentamer 2-NP-Me+ molecular clusters for Me+ = Li, Na, K, and Rb were assembled from four or five 2-NP molecules bound to a central alkali metal ion. The coordination symmetry around the six coordinated Li+, Na +, and K+ ions was that of a trigonal prism (D), with an octahedral arrangement (D). The Rb+ also revealed six-coordinate geometry and the central Rb+ ion adopted an octahedral arrangement (D). The eight-coordinated Cs+ ions with six 2-NP ligands were characteristic of a square antiprism (D). The square antiprism was the outcome of leaving two -nitro groups and two phenolic oxygens being left intermolecularly uncoordinated to the Cs+ ion. The 2-NP residues were strictly planar and contained short non-bonded intramolecular distances. van der Waals forces were present between the adjacently stacked phenyl rings. No water molecules were involved as ligands for any of the 2-nitrophenol-Me+ complexes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/4/1.4927140.html;jsessionid=qBCl894tt5EeMkRtwkN4b3zM.x-aip-live-02?itemId=/content/aip/journal/jcp/143/4/10.1063/1.4927140&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/4/10.1063/1.4927140&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/4/10.1063/1.4927140'
Right1,Right2,Right3,