Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/4/10.1063/1.4927247
1.
1.J. Čížek, J. Chem. Phys. 45, 4256 (1966);
http://dx.doi.org/10.1063/1.1727484
1.J. Čížek, Adv. Chem. Phys. 14, 35 (1969);
http://dx.doi.org/10.1002/9780470143599.ch2
1.J. Paldus, J. Čížek, and I. Shavitt, Phys. Rev. A 5, 50 (1972).
http://dx.doi.org/10.1103/PhysRevA.5.50
2.
2.I. Shavitt and R. J. Bartlett, Many–Body Methods in Chemistry and Physics: Many–Body Perturbation Theory and Coupled–Cluster Theory (Cambridge University Press, Cambridge, UK, 2009).
3.
3.T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic–Structure Theory, 1st ed. (Wiley & Sons, Ltd., West Sussex, England, 2000).
4.
4.C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).
http://dx.doi.org/10.1103/PhysRev.46.618
5.
5.G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).
http://dx.doi.org/10.1063/1.443164
6.
6.J. Noga and R. J. Bartlett, J. Chem. Phys. 86, 7041 (1987);
http://dx.doi.org/10.1063/1.452353
6.G. E. Scuseria and H. F. Schaefer, Chem. Phys. Lett. 152, 382 (1988).
http://dx.doi.org/10.1016/0009-2614(88)80110-6
7.
7.J. J. Eriksen, K. Kristensen, T. Kjærgaard, P. Jørgensen, and J. Gauss, J. Chem. Phys. 140, 064108 (2014).
http://dx.doi.org/10.1063/1.4862501
8.
8.J. J. Eriksen, P. Jørgensen, and J. Gauss, J. Chem. Phys. 142, 014102 (2015).
http://dx.doi.org/10.1063/1.4904754
9.
9.M. Urban, J. Noga, S. J. Cole, and R. J. Bartlett, J. Chem. Phys. 83, 4041 (1985).
http://dx.doi.org/10.1063/1.449067
10.
10.S. A. Kucharski and R. J. Bartlett, J. Chem. Phys. 108, 9221 (1998).
http://dx.doi.org/10.1063/1.476376
11.
11.R. J. Bartlett, J. D. Watts, S. A. Kucharski, and J. Noga, Chem. Phys. Lett. 165, 513 (1990).
http://dx.doi.org/10.1016/0009-2614(90)87031-L
12.
12.J. F. Stanton, Chem. Phys. Lett. 281, 130 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)01144-5
13.
13.Y. J. Bomble, J. F. Stanton, M. Kállay, and J. Gauss, J. Chem. Phys. 123, 054101 (2005).
http://dx.doi.org/10.1063/1.1950567
14.
14.J. J. Eriksen, P. Jørgensen, J. Olsen, and J. Gauss, J. Chem. Phys. 140, 174114 (2014).
http://dx.doi.org/10.1063/1.4873138
15.
15.T. A. Ruden, T. Helgaker, P. Jørgensen, and J. Olsen, Chem. Phys. Lett. 371, 62 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)00225-2
16.
16.A. D. Boese, M. Oren, O. Atasoylu, J. M. L. Martin, M. Kállay, and J. Gauss, J. Chem. Phys. 120, 4129 (2004).
http://dx.doi.org/10.1063/1.1638736
17.
17.A. Tajti, P. G. Szalay, A. G. Császár, M. Kállay, J. Gauss, E. F. Valeev, B. A. Flowers, J. Vázquez, and J. F. Stanton, J. Chem. Phys. 121, 11599 (2004).
http://dx.doi.org/10.1063/1.1811608
18.
18.Y. J. Bomble, J. Vázquez, M. Kállay, C. Michauk, P. G. Szalay, A. G. Császár, J. Gauss, and J. F. Stanton, J. Chem. Phys. 125, 064108 (2006).
http://dx.doi.org/10.1063/1.2206789
19.
19.M. E. Harding, J. Vázquez, B. Ruscic, A. K. Wilson, J. Gauss, and J. F. Stanton, J. Chem. Phys. 128, 114111 (2008).
http://dx.doi.org/10.1063/1.2835612
20.
20.M. Kállay, J. Gauss, and P. G. Szalay, J. Chem. Phys. 119, 2991 (2003).
http://dx.doi.org/10.1063/1.1589003
21.
21.P. G. Szalay, L. Thøgersen, J. Olsen, M. Kállay, and J. Gauss, J. Phys. Chem. A 108, 3030 (2004).
http://dx.doi.org/10.1021/jp036885t
22.
22.M. Heckert, M. Kállay, and J. Gauss, Mol. Phys. 103, 2109 (2005).
http://dx.doi.org/10.1080/00268970500083416
23.
23.M. Heckert, M. Kállay, D. P. Tew, W. Klopper, and J. Gauss, J. Chem. Phys. 125, 044108 (2006).
http://dx.doi.org/10.1063/1.2217732
24.
24.N. Oliphant and L. Adamowicz, J. Chem. Phys. 95, 6645 (1991);
http://dx.doi.org/10.1063/1.461534
24.S. A. Kucharski and R. J. Bartlett, J. Chem. Phys. 97, 4282 (1992).
http://dx.doi.org/10.1063/1.463930
25.
25.M. Kállay and J. Gauss, J. Chem. Phys. 123, 214105 (2005).
http://dx.doi.org/10.1063/1.2121589
26.
26.K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).
http://dx.doi.org/10.1016/S0009-2614(89)87395-6
27.
27. We will not present any explicit numerical comparison against the alternative CCSD(TQ) and CCSD+TQ models, as tests performed by us on the systems of the present test set have shown the differences between the CCSD(TQf) and CCSD(TQ) models and the CCSD+TQ* and CCSD+TQ models to be negligible.
28.
28. In Ref. 12, Stanton used an alternate method based on perturbation theory starting from the CCSD wave function to arrive at the ΛCCSD(T) and CCSD(T) models, which is in many ways quite similar to the derivation of the CCSD(T-2) model in Ref. 7.
29.
29.S. A. Kucharski and R. J. Bartlett, J. Chem. Phys. 108, 5243 (1998).
http://dx.doi.org/10.1063/1.475961
30.
30.T. D. Crawford and J. F. Stanton, Int. J. Quantum Chem. 70, 601 (1998).
http://dx.doi.org/10.1002/(SICI)1097-461X(1998)70:4/5<601::AID-QUA6>3.0.CO;2-Z
31.
31.T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989);
http://dx.doi.org/10.1063/1.456153
31.D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 103, 4572 (1995).
http://dx.doi.org/10.1063/1.470645
32.
32.See supplementary material at http://dx.doi.org/10.1063/1.4927247 for individual absolute and relative energy differences.[Supplementary Material]
33.
33.D. A. Matthews and J. F. Stanton, J. Chem. Phys. 142, 064108 (2015).
http://dx.doi.org/10.1063/1.4907278
34.
34.cfour, Coupled-Cluster techniques for Computational Chemistry, a quantum-chemical program package by J. F. Stanton, J. Gauss, M. E. Harding, and P. G. Szalay with contributions from A. A. Auer, R. J. Bartlett, U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble, L. Cheng, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W. J. Lauderdale, F. Lipparini, D. A. Matthews, T. Metzroth, L. A. Mück, D. P. O’Neill, D. R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C. Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J. D. Watts and the integral packagesmolecule (J. Almlöf and P. R. Taylor), props (P. R. Taylor), abacus(T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen. For the current version, see http://www.cfour.de.
35.
35.E. Solomonik, D. Matthews, J. R. Hammond, J. F. Stanton, and J. Demmel, J. Parallel Distrib. Comput. 74, 3176 (2014).
http://dx.doi.org/10.1016/j.jpdc.2014.06.002
36.
36.H. S. Nataraj, M. Kállay, and L. Visscher, J. Chem. Phys. 133, 234109 (2010).
http://dx.doi.org/10.1063/1.3518712
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/4/10.1063/1.4927247
Loading
/content/aip/journal/jcp/143/4/10.1063/1.4927247
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/4/10.1063/1.4927247
2015-07-22
2016-12-08

Abstract

We compare the numerical performance of various non-iterative coupled cluster (CC) quadruples models. The results collectively show how approaches that attempt to correct the CC singles and doubles energy for the combined effect of triple and quadruple excitations all fail at recovering the correlation energy of the full CC singles, doubles, triples, and quadruples (CCSDTQ) model to within sufficient accuracy. Such a level of accuracy is only achieved by models that make corrections to the full CC singles, doubles, and triples (CCSDT) energy for the isolated effect of quadruple excitations of which the CCSDT(Q–3) and CCSDT(Q–4) models of the Lagrangian-based CCSDT(Q–) perturbation series are found to outperform alternative models that add either of the established [Q] and (Q) corrections to the CCSDT energy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/4/1.4927247.html;jsessionid=APkLwIYMCB_HrdbwvP03hHTD.x-aip-live-03?itemId=/content/aip/journal/jcp/143/4/10.1063/1.4927247&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/4/10.1063/1.4927247&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/4/10.1063/1.4927247'
Right1,Right2,Right3,