Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. D. Watson and F. H. C. Crick, Nature 171, 737 (1953).
2.A. Sancar, L. A. Lindsey-Boltz, K. Ünsal-Kacmaz, and S. Linn, Annu. Rev. Biochem. 73, 39 (2004).
3.R. Guo, J. Chen, F. Zhu, A. K. Biswas, T. R. Berton, D. L. Mitchell, and D. G. Johnson, J. Biol. Chem. 285, 19308 (2010).
4.T. Takaya, C. Su, K. de La Harpe, C. E. Crespo-Hernández, and B. Kohler, Proc. Natl. Acad. Sci. U. S. A. 105, 10285 (2008).
5.B. Boudaïffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, Science 287, 1658 (2000).
6.W. Han and K. N. Yu, in Advances in Genetics Research, edited by K. V. Urbano (Nova Science Publishers, Inc., United States of America, 2010), Vol. 4, Chap. 7.
7.K. Kleinermanns, D. Nachtigallová, and M. S. de Vries, Int. Rev. Phys. Chem. 32, 308 (2013).
8.C. E. Crespo-Hernández, B. Cohen, P. M. Hare, and B. Kohler, Chem. Rev. 104, 1977 (2004).
9.H. Saigusa, J. Photochem. Photobiol., C 7, 197 (2006).
10.S. Lobsiger, S. Blaser, R. K. Sinha, H. M. Frey, and S. Leutwyler, Nat. Chem. 6, 989 (2014).
11.M. Barbatti, A. J. A. Aquino, J. J. Szymczak, D. Nachtigallová, P. Hobza, and H. Lischka, Proc. Natl. Acad. Sci. U. S. A. 107, 21453 (2010).
12.A. L. Sobolewski, W. Domcke, and C. Hättig, Proc. Natl. Acad. Sci. U. S. A. 102, 17903 (2005).
13.S. Steenken, Chem. Rev. 89, 503 (1989).
14.M. Hutter and T. Clark, J. Am. Chem. Soc. 118, 7574 (1996).
15.P. Partin and H. F. Schaefer III, Proc. Natl. Acad. Sci. U. S. A. 102, 6698 (2005).
16.E. Nir, K. Kleinermanns, and M. S. de Vries, Nature 408, 949 (2000).
17.J. Bertran, L. Blancafort, M. Noguera, and M. Sodupe, in Computational Studies of RNA and DNA (Springer, The Netherlands, 2006), Vol. 2, Chap. 16.
18.B. Lippert, Coord. Chem. Rev. 200-202, 487 (2000).
19.B. Lippert and D. Gupta, Dalton Trans. 2009, 4619.
20.J. E. Sponer, J. V. Burda, J. Leszczynki, and J. Sponer, in Computational Studies of RNA and DNA (Springer, The Netherlands, 2006), Vol. 2, Chap. 15.
21.M. A. Sirover and L. A. Loeb, Science 194, 1434 (1976).
22.M. Rai, A. Yadav, and A. Gade, Biotechnol. Adv. 27, 76 (2009).
23.J. Zheng, P. R. Nicovich, and R. M. Dickson, Annu. Rev. Phys. Chem. 58, 409 (2007).
24.J. T. Petty, S. P. Story, J. C. Hsiang, and R. M. Dickson, J. Phys. Chem. Lett. 4, 1148 (2013).
25.P. R. O’Neill, E. G. Gwinn, and D. K. Fyngenson, J. Phys. Chem. C 115, 24061 (2011).
26.S. M. Copp, D. Schultz, S. Swasey, J. Pavlovich, M. Debord, A. Chiu, K. Olsson, and E. Gwinn, J. Phys. Chem. Lett. 5, 959 (2014).
27.A. Ono, C. Shiqi, T. Humika, M. Tashiro, T. Fujimoto, T. Machinami, S. Oda, Y. Miyake, I. Okamoto, and Y. Tanaka, Chem. Commun. 44, 4825 (2008).
28.H. Urata, E. Yamaguchi, Y. Nakamura, and S. Wada, Chem. Commun. 47, 941 (2011).
29.S. Choi, R. M. Dickson, and J. Yu, Chem. Soc. Rev. 42, 1867 (2012).
30.M. Berdakin, V. Steinmetz, P. Maitre, and G. A. Pino, J. Phys. Chem. A 118, 3804 (2014).
31.C. Canuel, M. Mons, F. Piuzzi, B. Tardivel, I. Dimicoli, and M. Elhanine, J. Chem. Phys. 122, 074316 (2005).
32.S. Lobsiger, M. A. Trachsel, H. M. Frey, and S. Leutwyler, J. Phys. Chem. B 117, 6106 (2013).
33.A. L. Sobolewski and W. Domcke, Phys. Chem. Chem. Phys. 12, 4897 (2010).
34.M. Berdakin, G. Féraud, C. Dedonder-Lardeux, C. Jouvet, and G. A. Pino, J. Phys. Chem. Lett. 5, 2295 (2014).
35.G. Féraud, M. Broquier, C. Dedonder-Lardeux, G. Grégoire, S. Soorkia, and C. Jouvet, Phys. Chem. Chem. Phys. 16, 5250 (2014).
36.J. U. Andersen, H. Cederquist, J. S. Forster, B. A. Huber, P. Hvelplund, J. Jensen, B. Liu, B. Manil, L. Maunoury, S. Brøndsted Nielsen, U. V. Pedersen, J. Rangama, H. T. Schmidt, S. Tomita, and H. Zettergren, Phys. Chem. Chem. Phys. 6, 2676 (2004).
37.M. Berdakin, G. Féraud, C. Dedonder-Lardeux, C. Jouvet, and G. A. Pino, Phys. Chem. Chem. Phys. 16, 10643 (2014).
38.H. Kang, G. Féraud, C. Dedonder-Lardeux, and C. Jouvet, J. Phys. Chem. Lett. 5, 2760 (2014).
39.R. Ahlrichs, M. Bär, M. Häser, H. Horn, and C. Kömel, Chem. Phys. Lett. 162, 165 (1989).
40.C. Hättig, J. Chem. Phys. 118, 7751 (2003).
41.D. Andrea, U. Haussermann, M. Dolg, M. Stoll, and H. Preuss, Theor. Chim. Acta 77, 123 (1990).
42.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, M. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2009.
43.G. Féraud, M. Berdakin, C. Dedonder-Lardeux, C. Jouvet, and G. A. Pino, J. Phys. Chem. B 119, 2219 (2015).
44.M. Berdakin, V. Steinmetz, P. Maitre, and G. A. Pino, “On the Ag+–cytosine interaction: The effect of microhydration probed by IR optical spectroscopy and density functional theory,” Phys. Chem. Chem. Phys. (published online 29 May 2015).
45.E. Nir, I. Hünig, K. Kleinermanns, and M. S. de Vries, Phys. Chem. Chem. Phys. 5, 4780 (2003).
46.S. Lobsiger and S. Leutwyler, J. Phys. Chem. Lett. 3, 3576 (2012).
47.CRC Handbook of Chemistry and Physics, edited by D. R. Lide (CRC Press, 1992).
48.E. Pluharová, P. Slavicek, and P. Jungwirth, Acc. Chem. Res. 48, 1209 (2015).

Data & Media loading...


Article metrics loading...



The photo-induced damages of DNA in interaction with metal cations, which are found in various environments, still remain to be characterized. In this paper, we show how the complexation of a DNA base (cytosine (Cyt)) with a metal cation (Ag +) changes its electronic properties. By means of UV photofragment spectroscopy of cold ions, it was found that the photoexcitation of the CytAg+ complex at low energy (315-282) nm efficiently leads to ionized cytosine (Cyt+) as the single product. This occurs through a charge transfer state in which an electron from the p orbital of Cyt is promoted to Ag +, as confirmed by calculations at the TD-DFT/B3LYP and RI-ADC(2) theory level using the SV(P) basis set. The low ionization energy of Cyt in the presence of Ag + could have important implications as point mutation of DNA upon sunlight exposition.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd