Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.B. J. Alder and T. E. Wainwright, “Phase transition for a hard sphere system,” J. Chem. Phys. 27(5), 12081209 (1957).
2.D. R. Herschbach, “Molecular-dynamics of elementary chemical-reactions (Nobel lecture),” Angew. Chem., Int. Ed. Engl. 26(12), 12211243 (1987).
3.M. Karplus, “Development of multiscale models for complex chemical systems: From H+H2 to biomolecules (Nobel lecture),” Angew. Chem., Int. Ed. Engl. 53(38), 9992 (2014).
4.B. L. Holian and P. S. Lomdahl, “Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations,” Science 280(5372), 2085 (1998).
5.J. Song and W. A. Curtin, “Atomic mechanism and prediction of hydrogen embrittlement in iron,” Nat. Mater. 12(2), 145151 (2013).
6.M. Karplus and J. A. McCammon, “Molecular dynamics simulations of biomolecules,” Nat. Struct. Biol. 9(9), 646652 (2002).
7.A. Strachan, G. Klimeck, and M. Lundstrom, “Cyber-enabled simulations in nanoscale science and engineering introduction,” Comput. Sci. Eng. 12(2), 1217 (2010).
8.S. P. Brophy, A. J. Magana, and A. Strachan, “Lectures and simulation laboratories to improve learners conceptual understanding,” Adv. Eng. Educ. 3(3), 127 (2013).
9.R. Car and M. Parrinello, “Unified approach for molecular-dynamics and density-functional theory,” Phys. Rev. Lett. 55(22), 24712474 (1985).
10.M. Sprik, J. Hutter, and M. Parrinello, “Ab initio molecular dynamics simulation of liquid water: Comparison three gradient-corrected density functionals,” J. Chem. Phys. 105(3), 11421152 (1996).
11.M. E. Tuckerman, D. Marx, M. L. Klein, and M. Parrinello, “On the quantum nature of the shared proton in hydrogen bonds,” Science 275(5301), 817820 (1997).
12.M. S. Daw and M. I. Baskes, “Embedded-atom method—Derivation and application to impurities, surfaces, and other defects in metals,” Phys. Rev. B 29(12), 64436453 (1984).
13.M. I. Baskes, “Modified embedded-atom potentials for cubic materials and impurities,” Phys. Rev. B 46(5), 27272742 (1992).
14.F. H. Stillinger and T. A. Weber, “Computer-simulation of local order in condensed phases of silicon,” Phys. Rev. B 31(8), 52625271 (1985).
15.J. Tersoff, “New empirical-approach for the structure and energy of covalent systems,” Phys. Rev. B 37(12), 69917000 (1988).
16.G. V. Lewis and C. R. A. Catlow, “Potential models for ionic oxides,” J. Phys. C: Solid State Phys. 18(6), 11491161 (1985).
17.F. H. Streitz and J. W. Mintmire, “Electrostatic potentials for metal-oxide surfaces and interfaces,” Phys. Rev. B 50(16), 11996 (1994).
18.S. L. Mayo, B. D. Olafson, and W. A. Goddard, “Dreiding—A generic force-field for molecular simulations,” J. Phys. Chem. 94(26), 88978909 (1990).
19.W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, “A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (Vol. 117,p. 5179, 1995),” J. Am. Chem. Soc. 118(9), 2309 (1996).
20.B. R. Brooks, C. L. Brooks III, A. D. Mackerell, Jr., L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, and M. Karplus, “CHARMM: The biomolecular simulation program,” J. Comput. Chem. 30(10, SI), 15451614 (2009).
21.A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, “ReaxFF: A reactive force field for hydrocarbons,” J. Phys. Chem. A 105(41), 93969409 (2001).
22.H. S. Johnston and C. Parr, “Activation energies from bond energies. 1. Hydrogen transfer reactions,” J. Am. Chem. Soc. 85(17), 25442551 (1963).
23.S. W. Rick, S. J. Stuart, and B. J. Berne, “Dynamical fluctuating charge force-fields - application to liquid water,” J. Chem. Phys. 101(7), 61416156 (1994).
24.A. Strachan, A. C. T. van Duin, D. Chakraborty, S. Dasgupta, and W. A. Goddard, “Shock waves in high-energy materials: The initial chemical events in nitramine RDX,” Phys. Rev. Lett. 91(9), 098301 (2003).
25.J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. T. van Duin, and S. A. Pandit, “A reactive molecular dynamics simulation of the silica-water interface,” J. Chem. Phys. 132(17), 174704 (2010).
26.A. C. T. van Duin, V. S. Bryantsev, M. S. Diallo, W. A. Goddard, O. Rahaman, D. J. Doren, D. Raymand, and K. Hermansson, “Development and validation of a ReaxFF reactive force field for Cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases,” J. Phys. Chem. A 114(35), 95079514 (2010).
27.K. D. Nielson, A. C. T. van Duin, J. Oxgaard, W. Q. Deng, and W. A. Goddard, “Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes,” J. Phys. Chem. A 109(3), 493499 (2005).
28.J. M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature 414(6861), 359367 (2001).
29.P. Simon and Y. Gogotsi, “Materials for electrochemical capacitors,” Nat. Mater. 7(11), 845854 (2008).
30.R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nat. Mater. 6(11), 833840 (2007).
31.W. B. Dapp and M. H. Mueser, “Redox reactions with empirical potentials: Atomistic battery discharge simulations,” J. Chem. Phys. 139(6), 064106 (2013).
32.C. Merlet, B. Rotenberg, P. A. Madden, P.-L. Taberna, P. Simon, Y. Gogotsi, and M. Salanne, “On the molecular origin of supercapacitance in nanoporous carbon electrodes,” Nat. Mater. 11(4), 306310 (2012).
33.N. Onofrio, D. Guzman, and A. Strachan, “Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells,” Nat. Mater. 14, 440446 (2015).
34.A. K. Rappe and W. A. Goddard, “Charge equilibration for molecular-dynamics simulations,” J. Phys. Chem. 95(8), 33583363 (1991).
35.S. J. Stuart, A. B. Tutein, and J. A. Harrison, “A reactive potential for hydrocarbons with intermolecular interactions,” J. Chem. Phys. 112(14), 64726486 (2000).
36.D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, “A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons,” J. Phys.: Condens. Matter 14(4), 783802 (2002).
37.W. J. Mortier, S. K. Ghosh, and S. Shankar, “Electronegativity equalization method for the calculation of atomic charges in molecules,” J. Am. Chem. Soc. 108(15), 43154320 (1986).
38.R. A. Nistor, J. G. Polihronov, M. H. Muser, and N. J. Mosey, “A generalization of the charge equilibration method for nonmetallic materials,” J. Chem. Phys. 125(9), 094108 (2006).
39.T. Verstraelen, P. W. Ayers, V. Van Speybroeck, and M. Waroquier, “ACKS2: Atom-condensed Kohn-Sham DFT approximated to second order,” J. Chem. Phys. 138(7), 074108 (2013).
40.J. Chen and T. J. Martinez, “Charge conservation in electronegativity equalization and its implications for the electrostatic properties of fluctuating-charge models,” J. Chem. Phys. 131(4), 044114 (2009).
41.O. Assowe, O. Politano, V. Vignal, P. Arnoux, B. Diawara, O. Verners, and A. C. T. van Duin, “Reactive molecular dynamics of the initial oxidation stages of Ni(111) in pure water: Effect of an applied electric field,” J. Phys. Chem. A 116(48), 1179611805 (2012).
42.H. Hakkinen and U. Landman, “Superheating, melting, and annealing of copper surfaces,” Phys. Rev. Lett. 71(7), 10231026 (1993).
43.K.-H. Lin, B. L. Holian, T. C. Germann, and A. Strachan, “Mesodynamics with implicit degrees of freedom,” J. Chem. Phys. 141(6), 064107 (2014).
44.A. Strachan and B. L. Holian, “Energy exchange between mesoparticles and their internal degrees of freedom,” Phys. Rev. Lett. 94(1), 014301 (2005).
45.J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, Inc., New Jersey, USA, 1991).
46.See supplementary material at for more details.[Supplementary Material]
47.P. Steve, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117(1), 119 (1995).
48.N. Onofrio and A. Strachan, LAMMPS, Alejandro Strachan Research Group, 2015
49.H. M. Aktulga, J. C. Fogarty, S. A. Pandit, and A. Y. Grama, “Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques,” Parallel Comput. 38(4-5), 245259 (2012).
50.R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges,” Adv. Mater. 21(25-26), 2632 (2009).
51.N. L. Anderson, R. P. Vedula, P. A. Schultz, R. M. Van Ginhoven, and A. Strachan, “First-principles investigation of low energy E′ center precursors in amorphous silica,” Phys. Rev. Lett. 106(20), 206402 (2011).
52.T. Tsuruoka, K. Terabe, T. Hasegawa, I. Valov, R. Waser, and M. Aono, “Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches,” Adv. Funct. Mater. 22(1), 7077 (2012).
53.I. Valov, I. Sapezanskaia, A. Nayak, T. Tsuruoka, T. Bredow, T. Hasegawa, G. Staikov, M. Aono, and R. Waser, “Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces,” Nat. Mater. 11(6), 530535 (2012).
54.N. Bonnet and N. Marzari, “First-principles prediction of the equilibrium shape of nanoparticles under realistic electrochemical conditions,” Phys. Rev. Lett. 110(8), 086104 (2013).

Data & Media loading...


Article metrics loading...



We introduce electrochemical dynamics with implicit degrees of freedom (EChemDID), a model to describe electrochemical driving force in reactive molecular dynamics simulations. The method describes the equilibration of external electrochemical potentials (voltage) within metallic structures and their effect on the self-consistent partial atomic charges used in reactive molecular dynamics. An additional variable assigned to each atom denotes the local potential in its vicinity and we use fictitious, but computationally convenient, dynamics to describe its equilibration within connected metallic structures on-the-fly during the molecular dynamics simulation. This local electrostatic potential is used to dynamically modify the atomic electronegativities used to compute partial atomic changes via charge equilibration. Validation tests show that the method provides an accurate description of the electric fields generated by the applied voltage and the driving force for electrochemical reactions. We demonstrate EChemDID via simulations of the operation of electrochemical metallization cells. The simulations predict the switching of the device between a high-resistance to a low-resistance state as a conductive metallic bridge is formed and resistive currents that can be compared with experimental measurements. In addition to applications in nanoelectronics, EChemDID could be useful to model electrochemical energy conversion devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd