Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/5/10.1063/1.4927562
1.
1.B. J. Alder and T. E. Wainwright, “Phase transition for a hard sphere system,” J. Chem. Phys. 27(5), 12081209 (1957).
http://dx.doi.org/10.1063/1.1743957
2.
2.D. R. Herschbach, “Molecular-dynamics of elementary chemical-reactions (Nobel lecture),” Angew. Chem., Int. Ed. Engl. 26(12), 12211243 (1987).
http://dx.doi.org/10.1002/anie.198712211
3.
3.M. Karplus, “Development of multiscale models for complex chemical systems: From H+H2 to biomolecules (Nobel lecture),” Angew. Chem., Int. Ed. Engl. 53(38), 9992 (2014).
http://dx.doi.org/10.1002/anie.201403924
4.
4.B. L. Holian and P. S. Lomdahl, “Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations,” Science 280(5372), 2085 (1998).
http://dx.doi.org/10.1126/science.280.5372.2085
5.
5.J. Song and W. A. Curtin, “Atomic mechanism and prediction of hydrogen embrittlement in iron,” Nat. Mater. 12(2), 145151 (2013).
http://dx.doi.org/10.1038/nmat3479
6.
6.M. Karplus and J. A. McCammon, “Molecular dynamics simulations of biomolecules,” Nat. Struct. Biol. 9(9), 646652 (2002).
http://dx.doi.org/10.1038/nsb0902-646
7.
7.A. Strachan, G. Klimeck, and M. Lundstrom, “Cyber-enabled simulations in nanoscale science and engineering introduction,” Comput. Sci. Eng. 12(2), 1217 (2010).
http://dx.doi.org/10.1109/MCSE.2010.38
8.
8.S. P. Brophy, A. J. Magana, and A. Strachan, “Lectures and simulation laboratories to improve learners conceptual understanding,” Adv. Eng. Educ. 3(3), 127 (2013).
9.
9.R. Car and M. Parrinello, “Unified approach for molecular-dynamics and density-functional theory,” Phys. Rev. Lett. 55(22), 24712474 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.2471
10.
10.M. Sprik, J. Hutter, and M. Parrinello, “Ab initio molecular dynamics simulation of liquid water: Comparison three gradient-corrected density functionals,” J. Chem. Phys. 105(3), 11421152 (1996).
http://dx.doi.org/10.1063/1.471957
11.
11.M. E. Tuckerman, D. Marx, M. L. Klein, and M. Parrinello, “On the quantum nature of the shared proton in hydrogen bonds,” Science 275(5301), 817820 (1997).
http://dx.doi.org/10.1126/science.275.5301.817
12.
12.M. S. Daw and M. I. Baskes, “Embedded-atom method—Derivation and application to impurities, surfaces, and other defects in metals,” Phys. Rev. B 29(12), 64436453 (1984).
http://dx.doi.org/10.1103/PhysRevB.29.6443
13.
13.M. I. Baskes, “Modified embedded-atom potentials for cubic materials and impurities,” Phys. Rev. B 46(5), 27272742 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.2727
14.
14.F. H. Stillinger and T. A. Weber, “Computer-simulation of local order in condensed phases of silicon,” Phys. Rev. B 31(8), 52625271 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.5262
15.
15.J. Tersoff, “New empirical-approach for the structure and energy of covalent systems,” Phys. Rev. B 37(12), 69917000 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.6991
16.
16.G. V. Lewis and C. R. A. Catlow, “Potential models for ionic oxides,” J. Phys. C: Solid State Phys. 18(6), 11491161 (1985).
http://dx.doi.org/10.1088/0022-3719/18/6/010
17.
17.F. H. Streitz and J. W. Mintmire, “Electrostatic potentials for metal-oxide surfaces and interfaces,” Phys. Rev. B 50(16), 11996 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.11996
18.
18.S. L. Mayo, B. D. Olafson, and W. A. Goddard, “Dreiding—A generic force-field for molecular simulations,” J. Phys. Chem. 94(26), 88978909 (1990).
http://dx.doi.org/10.1021/j100389a010
19.
19.W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, “A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (Vol. 117,p. 5179, 1995),” J. Am. Chem. Soc. 118(9), 2309 (1996).
http://dx.doi.org/10.1021/ja955032e
20.
20.B. R. Brooks, C. L. Brooks III, A. D. Mackerell, Jr., L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, and M. Karplus, “CHARMM: The biomolecular simulation program,” J. Comput. Chem. 30(10, SI), 15451614 (2009).
http://dx.doi.org/10.1002/jcc.21287
21.
21.A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, “ReaxFF: A reactive force field for hydrocarbons,” J. Phys. Chem. A 105(41), 93969409 (2001).
http://dx.doi.org/10.1021/jp004368u
22.
22.H. S. Johnston and C. Parr, “Activation energies from bond energies. 1. Hydrogen transfer reactions,” J. Am. Chem. Soc. 85(17), 25442551 (1963).
http://dx.doi.org/10.1021/ja00900a002
23.
23.S. W. Rick, S. J. Stuart, and B. J. Berne, “Dynamical fluctuating charge force-fields - application to liquid water,” J. Chem. Phys. 101(7), 61416156 (1994).
http://dx.doi.org/10.1063/1.468398
24.
24.A. Strachan, A. C. T. van Duin, D. Chakraborty, S. Dasgupta, and W. A. Goddard, “Shock waves in high-energy materials: The initial chemical events in nitramine RDX,” Phys. Rev. Lett. 91(9), 098301 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.098301
25.
25.J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. T. van Duin, and S. A. Pandit, “A reactive molecular dynamics simulation of the silica-water interface,” J. Chem. Phys. 132(17), 174704 (2010).
http://dx.doi.org/10.1063/1.3407433
26.
26.A. C. T. van Duin, V. S. Bryantsev, M. S. Diallo, W. A. Goddard, O. Rahaman, D. J. Doren, D. Raymand, and K. Hermansson, “Development and validation of a ReaxFF reactive force field for Cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases,” J. Phys. Chem. A 114(35), 95079514 (2010).
http://dx.doi.org/10.1021/jp102272z
27.
27.K. D. Nielson, A. C. T. van Duin, J. Oxgaard, W. Q. Deng, and W. A. Goddard, “Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes,” J. Phys. Chem. A 109(3), 493499 (2005).
http://dx.doi.org/10.1021/jp046244d
28.
28.J. M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature 414(6861), 359367 (2001).
http://dx.doi.org/10.1038/35104644
29.
29.P. Simon and Y. Gogotsi, “Materials for electrochemical capacitors,” Nat. Mater. 7(11), 845854 (2008).
http://dx.doi.org/10.1038/nmat2297
30.
30.R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nat. Mater. 6(11), 833840 (2007).
http://dx.doi.org/10.1038/nmat2023
31.
31.W. B. Dapp and M. H. Mueser, “Redox reactions with empirical potentials: Atomistic battery discharge simulations,” J. Chem. Phys. 139(6), 064106 (2013).
http://dx.doi.org/10.1063/1.4817772
32.
32.C. Merlet, B. Rotenberg, P. A. Madden, P.-L. Taberna, P. Simon, Y. Gogotsi, and M. Salanne, “On the molecular origin of supercapacitance in nanoporous carbon electrodes,” Nat. Mater. 11(4), 306310 (2012).
http://dx.doi.org/10.1038/nmat3260
33.
33.N. Onofrio, D. Guzman, and A. Strachan, “Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells,” Nat. Mater. 14, 440446 (2015).
http://dx.doi.org/10.1038/nmat4221
34.
34.A. K. Rappe and W. A. Goddard, “Charge equilibration for molecular-dynamics simulations,” J. Phys. Chem. 95(8), 33583363 (1991).
http://dx.doi.org/10.1021/j100161a070
35.
35.S. J. Stuart, A. B. Tutein, and J. A. Harrison, “A reactive potential for hydrocarbons with intermolecular interactions,” J. Chem. Phys. 112(14), 64726486 (2000).
http://dx.doi.org/10.1063/1.481208
36.
36.D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, “A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons,” J. Phys.: Condens. Matter 14(4), 783802 (2002).
http://dx.doi.org/10.1088/0953-8984/14/4/312
37.
37.W. J. Mortier, S. K. Ghosh, and S. Shankar, “Electronegativity equalization method for the calculation of atomic charges in molecules,” J. Am. Chem. Soc. 108(15), 43154320 (1986).
http://dx.doi.org/10.1021/ja00275a013
38.
38.R. A. Nistor, J. G. Polihronov, M. H. Muser, and N. J. Mosey, “A generalization of the charge equilibration method for nonmetallic materials,” J. Chem. Phys. 125(9), 094108 (2006).
http://dx.doi.org/10.1063/1.2346671
39.
39.T. Verstraelen, P. W. Ayers, V. Van Speybroeck, and M. Waroquier, “ACKS2: Atom-condensed Kohn-Sham DFT approximated to second order,” J. Chem. Phys. 138(7), 074108 (2013).
http://dx.doi.org/10.1063/1.4791569
40.
40.J. Chen and T. J. Martinez, “Charge conservation in electronegativity equalization and its implications for the electrostatic properties of fluctuating-charge models,” J. Chem. Phys. 131(4), 044114 (2009).
http://dx.doi.org/10.1063/1.3183167
41.
41.O. Assowe, O. Politano, V. Vignal, P. Arnoux, B. Diawara, O. Verners, and A. C. T. van Duin, “Reactive molecular dynamics of the initial oxidation stages of Ni(111) in pure water: Effect of an applied electric field,” J. Phys. Chem. A 116(48), 1179611805 (2012).
http://dx.doi.org/10.1021/jp306932a
42.
42.H. Hakkinen and U. Landman, “Superheating, melting, and annealing of copper surfaces,” Phys. Rev. Lett. 71(7), 10231026 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.1023
43.
43.K.-H. Lin, B. L. Holian, T. C. Germann, and A. Strachan, “Mesodynamics with implicit degrees of freedom,” J. Chem. Phys. 141(6), 064107 (2014).
http://dx.doi.org/10.1063/1.4891308
44.
44.A. Strachan and B. L. Holian, “Energy exchange between mesoparticles and their internal degrees of freedom,” Phys. Rev. Lett. 94(1), 014301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.014301
45.
45.J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, Inc., New Jersey, USA, 1991).
46.
46.See supplementary material at http://dx.doi.org/10.1063/1.4927562 for more details.[Supplementary Material]
47.
47.P. Steve, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117(1), 119 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
48.
48.N. Onofrio and A. Strachan, LAMMPS, Alejandro Strachan Research Group, 2015 https://nanohub.org/groups/strachangroup/lammpsmodules.
49.
49.H. M. Aktulga, J. C. Fogarty, S. A. Pandit, and A. Y. Grama, “Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques,” Parallel Comput. 38(4-5), 245259 (2012).
http://dx.doi.org/10.1016/j.parco.2011.08.005
50.
50.R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges,” Adv. Mater. 21(25-26), 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
51.
51.N. L. Anderson, R. P. Vedula, P. A. Schultz, R. M. Van Ginhoven, and A. Strachan, “First-principles investigation of low energy E′ center precursors in amorphous silica,” Phys. Rev. Lett. 106(20), 206402 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.206402
52.
52.T. Tsuruoka, K. Terabe, T. Hasegawa, I. Valov, R. Waser, and M. Aono, “Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches,” Adv. Funct. Mater. 22(1), 7077 (2012).
http://dx.doi.org/10.1002/adfm.201101846
53.
53.I. Valov, I. Sapezanskaia, A. Nayak, T. Tsuruoka, T. Bredow, T. Hasegawa, G. Staikov, M. Aono, and R. Waser, “Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces,” Nat. Mater. 11(6), 530535 (2012).
http://dx.doi.org/10.1038/nmat3307
54.
54.N. Bonnet and N. Marzari, “First-principles prediction of the equilibrium shape of nanoparticles under realistic electrochemical conditions,” Phys. Rev. Lett. 110(8), 086104 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.086104
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/5/10.1063/1.4927562
Loading
/content/aip/journal/jcp/143/5/10.1063/1.4927562
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/5/10.1063/1.4927562
2015-08-06
2016-12-08

Abstract

We introduce electrochemical dynamics with implicit degrees of freedom (EChemDID), a model to describe electrochemical driving force in reactive molecular dynamics simulations. The method describes the equilibration of external electrochemical potentials (voltage) within metallic structures and their effect on the self-consistent partial atomic charges used in reactive molecular dynamics. An additional variable assigned to each atom denotes the local potential in its vicinity and we use fictitious, but computationally convenient, dynamics to describe its equilibration within connected metallic structures on-the-fly during the molecular dynamics simulation. This local electrostatic potential is used to dynamically modify the atomic electronegativities used to compute partial atomic changes via charge equilibration. Validation tests show that the method provides an accurate description of the electric fields generated by the applied voltage and the driving force for electrochemical reactions. We demonstrate EChemDID via simulations of the operation of electrochemical metallization cells. The simulations predict the switching of the device between a high-resistance to a low-resistance state as a conductive metallic bridge is formed and resistive currents that can be compared with experimental measurements. In addition to applications in nanoelectronics, EChemDID could be useful to model electrochemical energy conversion devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/5/1.4927562.html;jsessionid=Wauub5iSIRZD19cGFIrrvYRB.x-aip-live-06?itemId=/content/aip/journal/jcp/143/5/10.1063/1.4927562&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/5/10.1063/1.4927562&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/5/10.1063/1.4927562'
Right1,Right2,Right3,