Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/5/10.1063/1.4927575
1.
1.K. Kitaura and K. Morokuma, Int. J. Quantum Chem. 10, 325 (1976).
http://dx.doi.org/10.1002/qua.560100211
2.
2.Y. Mo, J. Gao, and S. D. Peyerimhoff, J. Chem. Phys. 112, 5530 (2000).
http://dx.doi.org/10.1063/1.481185
3.
3.R. J. Azar and M. Head-Gordon, J. Chem. Phys. 136, 024103 (2012).
http://dx.doi.org/10.1063/1.3674992
4.
4.B. Jeziorski et al., in Methods and Techniques in Computational Chemistry: METECC94, Medium-Size Systems Vol. B, edited byE. Clementi (STEF, Cagliari, 1993), p. 79.
5.
5.B. Jeziorski, R. Moszynski, and K. Szalewicz, Chem. Rev. 94, 1887 (1994).
http://dx.doi.org/10.1021/cr00031a008
6.
6.J. F. Gonthier and C. Corminbœuf, J. Chem. Phys. 140, 154107 (2014).
http://dx.doi.org/10.1063/1.4871116
7.
7.I. Mayer, Int. J. Quantum Chem. 23, 341 (1983).
http://dx.doi.org/10.1002/qua.560230203
8.
8.R. M. Parrish and C. D. Sherrill, J. Chem. Phys. 141, 044115 (2014).
http://dx.doi.org/10.1063/1.4889855
9.
9.R. M. Parrish, T. M. Parker, and C. D. Sherrill, J. Chem. Theory Comput. 10, 4417 (2014).
http://dx.doi.org/10.1021/ct500724p
10.
10.F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller, J. Chem. Theory Comput. 8, 2564 (2012).
http://dx.doi.org/10.1021/ct300544e
11.
11.J. M. Turney et al., WIREs Comput. Mol. Sci. 2, 556 (2012).
http://dx.doi.org/10.1002/wcms.93
12.
12.E. G. Hohenstein, R. M. Parrish, C. D. Sherrill, J. M. Turney, and H. F. Schaefer, J. Chem. Phys. 135, 174107 (2011).
http://dx.doi.org/10.1063/1.3656681
13.
13.T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, and C. D. Sherrill, J. Chem. Phys. 140, 094106 (2014).
http://dx.doi.org/10.1063/1.4867135
14.
14.G. Knizia, J. Chem. Theory Comput. 9, 4834 (2013).
http://dx.doi.org/10.1021/ct400687b
15.
15.S. Gronert, J. Org. Chem. 71, 1209 (2006).
http://dx.doi.org/10.1021/jo052363t
16.
16.S. Gronert, J. Org. Chem. 71, 9560 (2006).
http://dx.doi.org/10.1021/jo062078p
17.
17.S. Gronert, Chem. - Eur. J. 15, 5372 (2009).
http://dx.doi.org/10.1002/chem.200800282
18.
18.M. Wodrich et al., Chem. - Eur. J. 13, 7731 (2007).
http://dx.doi.org/10.1002/chem.200700602
19.
19.W. C. McKee and P. v. R. Schleyer, J. Am. Chem. Soc. 135, 13008 (2013).
http://dx.doi.org/10.1021/ja403934s
20.
20.P. R. Schreiner et al., Nature 477, 308 (2011).
http://dx.doi.org/10.1038/nature10367
21.
21.S. Grimme and P. R. Schreiner, Angew. Chem., Int. Ed. Engl. 50, 12639 (2011).
http://dx.doi.org/10.1002/anie.201103615
22.
22.See supplementary material at http://dx.doi.org/10.1063/1.4927575 for geometries, additional figures, and discussion of IBO localization solutions in 5H/5T.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/5/10.1063/1.4927575
Loading
/content/aip/journal/jcp/143/5/10.1063/1.4927575
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/5/10.1063/1.4927575
2015-08-04
2016-12-05

Abstract

We develop a simple methodology for the computation of symmetry-adapted perturbation theory (SAPT) interactionenergy contributions for intramolecular noncovalent interactions. In this approach, the local occupied orbitals of the total Hartree-Fock (HF) wavefunction are used to partition the fully interacting system into three chemically identifiable units: the noncovalent fragments A and B and a covalent linker C. Once these units are identified, the noninteracting HF wavefunctions of the fragments A and B are separately optimized while embedded in the HF wavefunction of C, providing the dressed zeroth order wavefunctions for A and B in the presence of C. Standard two-body SAPT (particularly SAPT0) is then applied between the relaxed wavefunctions for A and B. This intramolecular SAPT procedure is found to be remarkably straightforward and efficient, as evidenced by example applications ranging from diols to hexaphenyl-ethane derivatives.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/5/1.4927575.html;jsessionid=vzwG6FfWd1fa5aqJQuaJDTHy.x-aip-live-03?itemId=/content/aip/journal/jcp/143/5/10.1063/1.4927575&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/5/10.1063/1.4927575&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/5/10.1063/1.4927575'
Right1,Right2,Right3,