Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/5/10.1063/1.4927766
1.
1.K. F. Freed, J. Chem. Phys. 119, 5730 (2003).
http://dx.doi.org/10.1063/1.1600716
2.
2.J. Dudowicz, K. F. Freed, and J. F. Douglas, J. Chem. Phys. 124, 064901 (2006).
http://dx.doi.org/10.1063/1.2166391
3.
3.J. Dudowicz, J. F. Douglas, and K. F. Freed, J. Chem. Phys. 141, 234903 (2014).
http://dx.doi.org/10.1063/1.4903842
4.
4.J. Dudowicz, K. F. Freed, and J. F. Douglas, Adv. Chem. Phys.: Series 137, 125 (2008).
http://dx.doi.org/10.1002/SERIES2007
5.
5.K. F. Freed, Acc. Chem. Res. 44, 194 (2011).
http://dx.doi.org/10.1021/ar100122w
6.
6.W.-S. Xu and K. F. Freed, Macromolecules 47, 6990 (2014).
http://dx.doi.org/10.1021/ma501581u
7.
7.A. M. Nemirovsky, M. G. Bawendi, and K. F. Freed, J. Chem. Phys. 87, 7272 (1987).
http://dx.doi.org/10.1063/1.453320
8.
8.J. Dudowicz and K. F. Freed, Macromolecules 24, 5076 (1991).
http://dx.doi.org/10.1021/ma00018a014
9.
9.K. W. Foreman and K. F. Freed, Adv. Chem. Phys. 103, 335 (1998).
http://dx.doi.org/10.1002/9780470141625.ch5
10.
10.K. F. Freed and J. Dudowicz, Adv. Polym. Sci. 183, 63 (2005).
http://dx.doi.org/10.1007/b135883
11.
11.G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).
http://dx.doi.org/10.1063/1.1696442
12.
12.K. F. Freed, J. Chem. Phys. 141, 141102 (2014).
http://dx.doi.org/10.1063/1.4897973
13.
13.J. Dudowicz, K. F. Freed, and J. F. Douglas, J. Chem. Phys. 123, 111102 (2005).
http://dx.doi.org/10.1063/1.2035087
14.
14.J. Dudowicz, K. F. Freed, and J. F. Douglas, J. Phys. Chem. B 109, 21350 (2005).
http://dx.doi.org/10.1021/jp053693k
15.
15.J. Dudowicz, J. F. Douglas, and K. F. Freed, J. Chem. Phys. 142, 014905 (2015).
http://dx.doi.org/10.1063/1.4905216
16.
16.W.-S. Xu and K. F. Freed, J. Chem. Phys. 141, 044909 (2014).
http://dx.doi.org/10.1063/1.4890959
17.
17.K. F. Freed, J. Chem. Phys. 142, 134901 (2015).
http://dx.doi.org/10.1063/1.4916383
18.
18.J. Dudowicz and K. F. Freed, Macromolecules 26, 213 (1993).
http://dx.doi.org/10.1021/ma00053a033
19.
19.T. E. Karis, T. R. Russell, Y. Gallot, and A. M. Mayes, Macromolecules 28, 1129 (1995).
http://dx.doi.org/10.1021/ma00108a047
20.
20.T. P. Russell, T. E. Karis, Y. Gallot, and A. M. Mayes, Nature 368, 729 (1994).
http://dx.doi.org/10.1038/368729a0
21.
21.J. Dudowicz and K. F. Freed, Macromolecules 33, 5292 (2000).
http://dx.doi.org/10.1021/ma000232i
22.
22.E. A. Guggenheim, Proc. R. Soc. London, Ser. A 183, 203213 (1944).
http://dx.doi.org/10.1098/rspa.1944.0032
23.
23.E. B. Stukalin, J. F. Douglas, and K. F. Freed, J. Chem. Phys. 131, 114905 (2009).
http://dx.doi.org/10.1063/1.3216109
24.
24.P. J. Flory, Proc. R. Soc. London, Ser. A 234, 60 (1956).
http://dx.doi.org/10.1098/rspa.1956.0015
25.
25.J. H. Gibbs and E. A. DiMarzio, J. Chem. Phys. 28, 373 (1958).
http://dx.doi.org/10.1063/1.1744141
26.
26.P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Press, Ithaca, NY, 1979), p. 54.
27.
27.K. F. Freed, Renormalization Theory of Macromolecules (Wiley-Interscience, New York, 1987).
28.
28.W. Xu and K. F. Freed, Macromolecules 48, 2333 (2015).
http://dx.doi.org/10.1021/acs.macromol.5b00144
29.
29.R. Richert and C. A. Angell, J. Chem. Phys. 108, 9016 (1998).
http://dx.doi.org/10.1063/1.476348
30.
30.J. Dudowicz, K. F. Freed, and J. F. Douglas, J. Phys. Chem. B 109, 21285 (2005).
http://dx.doi.org/10.1021/jp0523266
31.
31.C. Donati, J. F. Douglas, W. Kob, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys. Rev. Lett. 80, 2338 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.2338
32.
32.F. W. Starr, J. F. Douglas, and S. Sastry, J. Chem. Phys. 138, 12A541 (2013).
http://dx.doi.org/10.1063/1.4790138
33.
33.B. A. P. Betancourt, J. F. Douglas, and F. W. Starr, J. Chem. Phys. 140, 204509 (2014).
http://dx.doi.org/10.1063/1.4878502
34.
34.J. F. Douglas, J. Dudowicz, and K. F. Freed, J. Chem. Phys. 125, 144907 (2006).
http://dx.doi.org/10.1063/1.2356863
35.
35.T. G. Fox and S. Loshaek, J. Polym. Sci. 15, 371 (1955).
http://dx.doi.org/10.1002/pol.1955.120158006
36.
36.G. Floudas and P. Stepanek, Macromolecules 31, 6951 (1998).
http://dx.doi.org/10.1021/ma9804601
37.
37.K. F. Freed, J. Chem. Phys. 130, 061103 (2009).
http://dx.doi.org/10.1063/1.3078516
38.
38.J. Dudowicz, J. F. Douglas, and K. F. Freed, J. Chem. Phys. 140, 194901 (2014).
http://dx.doi.org/10.1063/1.4875345
39.
39.J. Dudowicz, J. F. Douglas, and K. F. Freed, J. Chem. Phys. 140, 244905 (2014).
http://dx.doi.org/10.1063/1.4884123
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/5/10.1063/1.4927766
Loading
/content/aip/journal/jcp/143/5/10.1063/1.4927766
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/5/10.1063/1.4927766
2015-08-04
2016-09-27

Abstract

While a wide range of non-trivial predictions of the generalized entropytheory (GET) of glass-formation in polymer melts agree with a large number of observed universal and non-universal properties of these glass-formers and even for the dependence of these properties on monomer molecular structure, the huge mathematical complexity of the theory precludes its extension to describe, for instance, the perplexing, complex behavior observed for technologically important polymer films with thickness below ∼100 nm and for which a fundamental molecular theory is lacking for the structural relaxation. The present communication describes a hugely simplified version of the theory, called the simplified generalized entropytheory (SGET) that provides one component necessary for devising a theory for the structural relaxation of thin polymer films and thereby supplements the first required ingredient, the recently developed Flory-Huggins level theory for the thermodynamic properties of thin polymer films, before the concluding third step of combining all the components into the SGET for thin polymer films. Comparisons between the predictions of the SGET and the full GET for the four characteristic temperatures of glass-formation provide good agreement for a highly non-trivial model system of polymer melts with chains of the structure of poly(n- olefins) systems where the GET has produced good agreement with experiment. The comparisons consider values of the relative backbone and side group stiffnesses such that the glass transition temperature as the amount of excess free volume diminishes, contrary to general expectations but in accord with observations for poly(n-alkyl methacrylates). Moreover, the SGET is sufficiently concise to enable its discussion in a standard course on statistical mechanics or polymer physics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/5/1.4927766.html;jsessionid=a1vcWjLlQiM4U16vQo_ZdeN-.x-aip-live-06?itemId=/content/aip/journal/jcp/143/5/10.1063/1.4927766&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/5/10.1063/1.4927766&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/5/10.1063/1.4927766'
Right1,Right2,Right3,