Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/5/10.1063/1.4928193
1.
1.R. Bird, W. Stewart, and E. Lightfoot, Transport Phenomena (Wiley, 2007).
2.
2.F. Bonetto, J. L. Lebowitz, and L. Rey-Bellet, “Fourier’s law: A challenge to theorists,” preprint arXiv:math-ph/0002052 (2000).
3.
3.W. Grandy, Jr., Entropy and the Time Evolution of Macroscopic Systems, International Series of Monographs on Physics (OUP, Oxford, 2008).
4.
4.D. Kondepudi and I. Prigogine, From Heat Engines to Dissipative Structures (John Wiley & Son, 1998).
5.
5.R. Dewar, J. Phys. A: Math. Gen. 36, 631 (2003).
http://dx.doi.org/10.1088/0305-4470/36/3/303
6.
6.R. C. Dewar, J. Phys. A: Math. Gen. 38, L371 (2005).
http://dx.doi.org/10.1088/0305-4470/38/21/L01
7.
7.L. Onsager and S. Machlup, Phys. Rev. 91, 1505 (1953).
http://dx.doi.org/10.1103/PhysRev.91.1505
8.
8.E. T. Jaynes, in Complex Systems–Operational Approaches, edited by H. Haken (Springer-Verlag, Berlin, 1985), p. 254.
9.
9.S. Pressé, K. Ghosh, J. Lee, and K. A. Dill, Rev. Mod. Phys. 85, 1115 (2013).
http://dx.doi.org/10.1103/RevModPhys.85.1115
10.
10.P. D. Dixit and K. A. Dill, J. Chem. Theory Comput. 10, 3002 (2014).
http://dx.doi.org/10.1021/ct5001389
11.
11.G. Stock, K. Ghosh, and K. A. Dill, J. Chem. Phys. 128, 194102 (2008).
http://dx.doi.org/10.1063/1.2918345
12.
12.Q. A. Wang, Chaos, Solitons Fractals 23, 1253 (2005).
http://dx.doi.org/10.1016/S0960-0779(04)00375-3
13.
13.H. Ge, S. Pressé, K. Ghosh, and K. A. Dill, J. Chem. Phys. 136, 064108 (2012).
http://dx.doi.org/10.1063/1.3681941
14.
14.J. Lee and S. Pressé, J. Chem. Phys. 137, 074103 (2012).
http://dx.doi.org/10.1063/1.4743955
15.
15.P. D. Dixit, J. Abhinav, S. Gerhard, and A. Dill Ken (unpublished).
16.
16.M. S. Green, J. Chem. Phys. 20, 1281 (1952).
http://dx.doi.org/10.1063/1.1700722
17.
17.M. S. Green, J. Chem. Phys. 22, 398 (1954).
http://dx.doi.org/10.1063/1.1740082
18.
18.R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
http://dx.doi.org/10.1143/JPSJ.12.570
19.
19.L. Onsager, Phys. Rev. 37, 405 (1931).
http://dx.doi.org/10.1103/PhysRev.37.405
20.
20.L. Onsager, Phys. Rev. 38, 2265 (1931).
http://dx.doi.org/10.1103/PhysRev.38.2265
21.
21.G. Bochkov and Y. E. Kuzovlev, Zh. Eksp. Teor. Fiz. 72, 238 (1977).
22.
22.G. Bochkov and Y. E. Kuzovlev, Zh. Eksp. Teor. Fiz. 76, 1071 (1979).
23.
23.R. D. Astumian, Phys. Rev. Lett. 101, 046802 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.046802
24.
24.M. N. Artyomov, Phys. Rev. Lett. 102, 149701 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.149701
25.
25.U. Seifert, Eur. Phys. J. B 64, 423 (2008).
http://dx.doi.org/10.1140/epjb/e2008-00001-9
26.
26.T. Tomé and M. J. de Oliveira, Phys. Rev. Lett. 108, 020601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.020601
27.
27.See supplementary material at http://dx.doi.org/10.1063/1.4928193 for the time independence of Lagrange multipliers when fluxes are time independent, lack of higher order reciprocal relationships, and modified reciprocal relationships when fluxes have different parities.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/5/10.1063/1.4928193
Loading
/content/aip/journal/jcp/143/5/10.1063/1.4928193
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/5/10.1063/1.4928193
2015-08-06
2016-12-11

Abstract

There has been interest in finding a general variational principle for non-equilibrium statistical mechanics. We give evidence that (Max Cal) is such a principle. Max Cal, a variant of maximum entropy, predicts dynamical distribution functions by maximizing a path entropy subject to dynamical constraints, such as average fluxes. We first show that Max Cal leads to standard near-equilibrium results—including the Green-Kubo relations, Onsager’s reciprocal relations of coupled flows, and Prigogine’s principle of minimum entropy production—in a way that is particularly simple. We develop some generalizations of the Onsager and Prigogine results that apply arbitrarily far from equilibrium. Because Max Cal does not require any notion of “local equilibrium,” or any notion of entropy dissipation, or temperature, or even any restriction to material physics, it is more general than many traditional approaches. It also applicable to flows and traffic on networks, for example.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/5/1.4928193.html;jsessionid=KEKPBEhxOWL825Em2_YDNydN.x-aip-live-02?itemId=/content/aip/journal/jcp/143/5/10.1063/1.4928193&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/5/10.1063/1.4928193&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/5/10.1063/1.4928193'
Right1,Right2,Right3,