Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/6/10.1063/1.4927785
1.
1.D. R. Yarkony, Int. Rev. Phys. Chem. 11, 195 (1992).
http://dx.doi.org/10.1080/01442359209353270
2.
2.C. M. Marian, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 187 (2012).
http://dx.doi.org/10.1002/wcms.83
3.
3.D. G. Fedorov, S. Koseki, M. W. Schmidt, and M. S. Gordon, Int. Rev. Phys. Chem. 22, 551 (2003).
http://dx.doi.org/10.1080/0144235032000101743
4.
4.R. J. Cvetanović, “Addition of Atoms to Olefins in the Gas Phase,” in Advances in Photochemistry, edited by W. A. Noyes, G. S. Hammond, and J. N. Pitts (1963), Vol. 1, p. 115.
http://dx.doi.org/10.1002/9780470133316.ch5
5.
5.D. L. Singleton, S. Furuyama, R. J. Cvetanović, and R. S. Irwin, J. Chem. Phys. 63, 1003 (1975).
http://dx.doi.org/10.1063/1.431394
6.
6.C. A. Taatjes, D. L. Osborn, T. M. Selby, G. Meloni, A. J. Trevitt, E. Epifanovsky, A. I. Krylov, B. Sirjean, E. Dames, and H. Wang, J. Phys. Chem. A 114, 3355 (2010).
http://dx.doi.org/10.1021/jp9114145
7.
7.M. Dupuis, J. J. Wendoloski, T. Takada, and W. A. Lester, J. Chem. Phys. 76, 481 (1982).
http://dx.doi.org/10.1063/1.442748
8.
8.H. Sabbah, L. Biennier, I. A. Sims, Y. Georgievskii, S. J. Klippenstein, and I. W. M. Smith, Science 317, 102 (2007).
http://dx.doi.org/10.1126/science.1142373
9.
9.S. Zhao, W. Wu, H. Zhao, H. Wang, C. Yang, K. Liu, and H. Su, J. Phys. Chem. A 113, 23 (2009).
http://dx.doi.org/10.1021/jp8075707
10.
10.B. Fu, Y.-C. Han, J. M. Bowman, F. Leonori, N. Balucani, L. Angelucci, A. Occhiogrosso, R. Petrucci, and P. Casavecchia, J. Chem. Phys. 137, 22A532 (2012).
http://dx.doi.org/10.1063/1.4746758
11.
11.B. Fu, Y.-C. Han, J. M. Bowman, L. Angelucci, N. Balucani, F. Leonori, and P. Casavecchia, Proc. Natl. Acad. Sci. U. S. A. 109, 9733 (2012).
http://dx.doi.org/10.1073/pnas.1202672109
12.
12.T. L. Nguyen, L. Vereecken, X. J. Hou, M. T. Nguyen, and J. Peeters, J. Phys. Chem. A 109, 7489 (2005).
http://dx.doi.org/10.1021/jp052970k
13.
13.D. Hodgson, H.-Y. Zhang, M. R. Nimlos, and J. T. McKinnon, J. Phys. Chem. A 105, 4316 (2001).
http://dx.doi.org/10.1021/jp004134a
14.
14.T. L. Nguen, J. Peeters, and L. Vereecken, J. Phys. Chem. A 111, 3836 (2007).
http://dx.doi.org/10.1021/jp0660886
15.
15.A. C. West, J. D. Lynch, B. Sellner, H. Lischka, W. L. Hase, and T. L. Windus, Theor. Chim. Acta 131, 1123 (2012).
http://dx.doi.org/10.1007/s00214-012-1123-0
16.
16.Q. Cui and K. Morokuma, Theor. Chim. Acta 102, 127 (1999).
http://dx.doi.org/10.1007/s002140050482
17.
17.Q. Cui, K. Morokuma, J. M. Bowman, and S. J. Klippenstein, J. Chem. Phys. 110, 9469 (1999).
http://dx.doi.org/10.1063/1.478949
18.
18.R. G. Sadygov and D. R. Yarkony, J. Chem. Phys. 107, 4994 (1997).
http://dx.doi.org/10.1063/1.474862
19.
19.J. C. Tully, J. Chem. Phys. 61, 61 (1974).
http://dx.doi.org/10.1063/1.1681671
20.
20.G. E. Zahr, R. K. Preston, and W. H. Miller, J. Chem. Phys. 62, 1127 (1975).
http://dx.doi.org/10.1063/1.430556
21.
21.N. Turro, Modern Molecular Photochemistry (Benjamin/Cummings Pub. Co., 1978).
22.
22.M. Klessinger and J. Michl, Excited States and Photochemistry of Organic Molecules (VCH, 1995).
23.
23.T. Ha and P. Tinnefeld, Annu. Rev. Phys. Chem. 63, 595 (2012).
http://dx.doi.org/10.1146/annurev-physchem-032210-103340
24.
24.Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature 440, 908 (2006).
http://dx.doi.org/10.1038/nature04645
25.
25.M. A. Baldo, S. P. Forrest, and M. E. Thompson, Org. Electroluminescence 94, 267 (2005).
http://dx.doi.org/10.1201/9781420028201.ch6
26.
26.A. Tajti, P. G. Szalay, A. G. Császár, M. Kállay, J. Gauss, E. F. Valeev, B. A. Flowers, J. Vázquez, and J. F. Stanton, J. Chem. Phys. 121, 11599 (2004).
http://dx.doi.org/10.1063/1.1811608
27.
27.H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and Two Electron Atoms (Plenum, New York, 1977).
28.
28.Relativistic Electronic Structure Theory, edited by P. Schwerdtfeger (Elsevier, Amsterdam, 2002).
29.
29.H. Ågren, O. Vahtras, and B. Minaev, “Response theory and calculations of spin-orbit coupling phenomena in molecules,” in Advances in Quantum Chemistry (Academic Press, 1996), Vol. 27, pp. 71162.
30.
30.B. A. Hess, C. M. Marian, U. Wahlgren, and O. Gropen, Chem. Phys. Lett. 251, 365 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00119-4
31.
31.T. R. Furlani and H. F. King, J. Chem. Phys. 82, 5577 (1985).
http://dx.doi.org/10.1063/1.448967
32.
32.H. F. King and T. R. Furlani, J. Comput. Chem. 9, 771 (1988).
http://dx.doi.org/10.1002/jcc.540090707
33.
33.D. G. Fedorov and M. S. Gordon, J. Chem. Phys. 112, 5611 (2000).
http://dx.doi.org/10.1063/1.481136
34.
34.O. Vahtras, H. Ågren, P. Jørgensen, H. J. Aa. Jensen, T. Helgaker, and J. Olsen, J. Chem. Phys. 96, 2118 (1992).
http://dx.doi.org/10.1063/1.462063
35.
35.A. Berning, M. Schweizer, H.-J. Werner, P. Knowles, and P. Palmieri, Mol. Phys. 98, 1823 (2000).
http://dx.doi.org/10.1080/00268970009483386
36.
36.F. Neese, J. Chem. Phys. 122, 034107 (2005).
http://dx.doi.org/10.1063/1.1829047
37.
37.O. Christiansen, J. Gauss, and B. Schimmelpfennig, Phys. Chem. Chem. Phys. 2, 965 (2000).
http://dx.doi.org/10.1039/a908995k
38.
38.K. Klein and J. Gauss, J. Chem. Phys. 129, 194106 (2008).
http://dx.doi.org/10.1063/1.3013199
39.
39.L. A. Mück, “Highly accurate quantum chemistry: Spin-orbit splittings via multireference coupled-cluster methods and applications in heavy-atom main-group chemistry,” Ph.D. thesis, Johannes-Gutenberg Universität Mainz, 2013.
40.
40.L. A. Mück and J. Gauss, J. Chem. Phys. 136, 111103 (2012).
http://dx.doi.org/10.1063/1.3694132
41.
41.S. G. Chiodo and N. Russo, Chem. Phys. Lett. 490, 90 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.03.002
42.
42.Z. Li, B. Suo, Y. Zhang, Y. Xiao, and W. Liu, Mol. Phys. 111, 3741 (2013).
http://dx.doi.org/10.1080/00268976.2013.785611
43.
43.Z. Tu, F. Wang, and X. Li, J. Chem. Phys. 136, 174102 (2012).
http://dx.doi.org/10.1063/1.4704894
44.
44.D.-D. Yang, F. Wang, and J. Guo, Chem. Phys. Lett. 531, 236 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.02.014
45.
45.Z. Wang, Z. Tu, and F. Wang, J. Chem. Theory Comput. 10, 5567 (2014).
http://dx.doi.org/10.1021/ct500854m
46.
46.H. E. Zimmerman and A. G. Kutateladze, J. Am. Chem. Soc. 118, 249 (1996).
http://dx.doi.org/10.1021/ja953052a
47.
47.L. Salem and C. Rowland, Angew. Chem., Int. Ed. Engl. 11, 92 (1972).
http://dx.doi.org/10.1002/anie.197200921
48.
48.R. J. Bartlett, Annu. Rev. Phys. Chem. 32, 359 (1981).
http://dx.doi.org/10.1146/annurev.pc.32.100181.002043
49.
49.R. J. Bartlett and J. F. Stanton, Rev. Comput. Chem. 5, 65 (1994).
http://dx.doi.org/10.1002/9780470125823.ch2
50.
50.R. J. Bartlett, Int. J. Mol. Sci. 3, 579 (2002).
http://dx.doi.org/10.3390/i3060579
51.
51.A. I. Krylov, Annu. Rev. Phys. Chem. 59, 433 (2008).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093602
52.
52.R. J. Bartlett, Mol. Phys. 108, 2905 (2010).
http://dx.doi.org/10.1080/00268976.2010.531773
53.
53.K. Sneskov and O. Christiansen, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 566 (2012).
http://dx.doi.org/10.1002/wcms.99
54.
54.R. J. Bartlett, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 126 (2012).
http://dx.doi.org/10.1002/wcms.76
55.
55.H. Reisler and A. I. Krylov, Int. Rev. Phys. Chem. 28, 267 (2009).
http://dx.doi.org/10.1080/01442350902989170
56.
56.P. A. Pieniazek, S. A. Arnstein, S. E. Bradforth, A. I. Krylov, and C. D. Sherrill, J. Chem. Phys. 127, 164110 (2007).
http://dx.doi.org/10.1063/1.2795709
57.
57.A. I. Krylov, Acc. Chem. Res. 39, 83 (2006).
http://dx.doi.org/10.1021/ar0402006
58.
58.E. P. Wigner, Group Theory (Academic Press, New York, 1959).
59.
59.C. Eckart, Rev. Mod. Phys. 2, 305 (1930).
http://dx.doi.org/10.1103/RevModPhys.2.305
60.
60.A. I. Krylov, Chem. Phys. Lett. 338, 375 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00287-1
61.
61.S. V. Levchenko and A. I. Krylov, J. Chem. Phys. 120, 175 (2004).
http://dx.doi.org/10.1063/1.1630018
62.
62.M. Wladyslawski and M. Nooijen, “The photoelectron spectrum of the NO3 radical revisited: A theoretical investigation of potential energy surfaces and conical intersections,” in ACS Symposium Series (American Chemical Society, 2002), Vol. 828, pp. 6592.
http://dx.doi.org/10.1021/bk-2002-0828.ch004
63.
63.M. Nooijen, Int. J. Mol. Sci. 3, 656 (2002).
http://dx.doi.org/10.3390/i3060656
64.
64.K. W. Sattelmeyer, H. F. Schaefer, and J. F. Stanton, Chem. Phys. Lett. 378, 42 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)01181-3
65.
65.M. Musiał, A. Perera, and R. J. Bartlett, J. Chem. Phys. 134, 114108 (2011).
http://dx.doi.org/10.1063/1.3567115
66.
66.T. Kuś and A. I. Krylov, J. Chem. Phys. 135, 084109 (2011).
http://dx.doi.org/10.1063/1.3626149
67.
67.T. Kuś and A. I. Krylov, J. Chem. Phys. 136, 244109 (2012).
http://dx.doi.org/10.1063/1.4730296
68.
68.J. Shen and P. Piecuch, J. Chem. Phys. 138, 194102 (2013).
http://dx.doi.org/10.1063/1.4803883
69.
69.J. Shen and P. Piecuch, Mol. Phys. 112, 868 (2014).
http://dx.doi.org/10.1080/00268976.2014.886397
70.
70.H. J. Monkhorst, Int. J. Quantum Chem. 11, 421 (1977).
http://dx.doi.org/10.1002/qua.560120850
71.
71.D. Mukherjee and P. K. Mukherjee, Chem. Phys. 39, 325 (1979).
http://dx.doi.org/10.1016/0301-0104(79)80153-6
72.
72.H. Sekino and R. J. Bartlett, Int. J. Quantum Chem. 26, 255 (1984).
http://dx.doi.org/10.1002/qua.560260826
73.
73.H. Koch, H. J. Aa. Jensen, P. Jørgensen, and T. Helgaker, J. Chem. Phys. 93, 3345 (1990).
http://dx.doi.org/10.1063/1.458815
74.
74.M. Head-Gordon and T. J. Lee, “Single reference coupled cluster and perturbation theories of electronic excitation energies,” in Modern Ideas in Coupled Cluster Theory, edited byR. J. Bartlett (World Scientific, Singapore, 1997).
75.
75. The reference determines the separation of the orbital space into the occupied and virtual subspaces. Here, we use indices i, j, k, … and a, b, c, … to denote the orbitals from the two subspaces. To denote orbitals that can be either occupied or virtual, the letters p, q, r, s, … will be used.
76.
76.S. Koseki, M. Schmidt, and M. S. Gordon, J. Phys. Chem. 96, 10768 (1992).
http://dx.doi.org/10.1021/j100205a033
77.
77.T. Helgaker, S. Coriani, P. Jørgensen, K. Kristensen, J. Olsen, and K. Ruud, Chem. Rev. 112, 543 (2012).
http://dx.doi.org/10.1021/cr2002239
78.
78.P. B. Rozyczko, S. A. Perera, M. Nooijen, and R. J. Bartlett, J. Chem. Phys. 107, 6736 (1997).
http://dx.doi.org/10.1063/1.474917
79.
79.M. Kállay and J. Gauss, J. Mol. Struct.: THEOCHEM 768, 71 (2006).
http://dx.doi.org/10.1016/j.theochem.2006.05.021
80.
80.D. P. O’Neill, M. Kállay, and J. Gauss, J. Chem. Phys. 127, 134109 (2007).
http://dx.doi.org/10.1063/1.2770714
81.
81.J. F. Stanton and R. J. Bartlett, J. Chem. Phys. 98, 7029 (1993).
http://dx.doi.org/10.1063/1.464746
82.
82.K. Nanda and A. I. Krylov, J. Chem. Phys. 142, 064118 (2015).
http://dx.doi.org/10.1063/1.4907715
83.
83.J. F. Stanton, J. Chem. Phys. 101, 8928 (1994).
http://dx.doi.org/10.1063/1.468021
84.
84.R. Kobayashi, H. Koch, and P. Jørgensen, Chem. Phys. Lett. 219, 30 (1994).
http://dx.doi.org/10.1016/0009-2614(94)00051-4
85.
85.See supplementary material at http://dx.doi.org/10.1063/1.4927785 for additional details. This document can be reached through a direct link in the online article, HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).[Supplementary Material]
86.
86.S. V. Levchenko, T. Wang, and A. I. Krylov, J. Chem. Phys. 122, 224106 (2005).
http://dx.doi.org/10.1063/1.1877072
87.
87. For a state property, this expression needs to be modified as follows: .
88.
88.X. Feng, A. V. Luzanov, and A. I. Krylov, J. Phys. Chem. Lett. 4, 3845 (2013).
http://dx.doi.org/10.1021/jz402122m
89.
89.S. Matsika, X. Feng, A. V. Luzanov, and A. I. Krylov, J. Phys. Chem. A 118, 11943 (2014).
http://dx.doi.org/10.1021/jp506090g
90.
90.B. Schimmelpfennig, AMFI, an atomic mean-field spin-orbit integral program, University of Stockholm, 1996.
91.
91.Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kus, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock III, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguires, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A. DiStasio, Jr., H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W. D. Hanson-Heine, P. H. P. Harbach, A. W. Hauser, E. G. Hohenstein, Z. C. Holden, T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Laog, A. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J. Mayhall, C. M. Oana, R. Olivares-Amaya, D. P. O’Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, P. A. Pieniazek, A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, N. Sergueev, S. M. Sharada, S. Sharmaa, D. W. Small, A. Sodt, T. Stein, D. Stuck, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams, V. Vanovschi, S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhou, B. R. Brooks, G. K. L. Chan, D. M. Chipman, C. J. Cramer, W. A. Goddard III, M. S. Gordon, W. J. Hehre, A. Klamt, H. F. Schaefer III, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Warshel, X. Xu, A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-D. Chai, A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong, D. S. Lambrecht, W. Z. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov, P. M. W. Gill, and M. Head-Gordon, Mol. Phys. 113, 184 (2015).
http://dx.doi.org/10.1080/00268976.2014.952696
92.
92.J. F. Stanton, J. Gauss, M. E. Harding, and P. G. Szalay, with contributions from A. A. Auer, R. J. Bartlett, U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble, L. Cheng, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W. J. Lauderdale, F. Lipparini, D. A. Matthews, T. Metzroth, L. A. Mück, D. P. O’Neill, D. R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C. Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, and J. D. Watts; and the integral packages MOLECULE (J. Almlöf and P. R. Taylor), PROPS (P. R. Taylor), ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen. For the current version, see http://www.cfour.de.
93.
93.S. Stopkowicz, “Higher-order perturbative relativistic corrections to energies and properties,” Ph.D. thesis, Johannes-Gutenberg Universität Mainz, 2011.
94.
94.S. Stopkowicz and J. Gauss, J. Chem. Phys. 134, 064114 (2011).
http://dx.doi.org/10.1063/1.3522766
95.
95.L. E. McMurchie and E. R. Davidson, J. Chem. Phys. 26, 218 (1978).
http://dx.doi.org/10.1016/0021-9991(78)90092-x
96.
96.J. F. Stanton and J. Gauss, Theor. Chim. Acta 91, 267 (1995).
http://dx.doi.org/10.1007/s002140050104
97.
97.J. F. Stanton and J. Gauss, J. Chem. Phys. 101, 8938 (1994).
http://dx.doi.org/10.1063/1.468022
98.
98.J. F. Stanton and J. Gauss, J. Chem. Phys. 100, 4695 (1994).
http://dx.doi.org/10.1063/1.466253
99.
99.M. A. El-Sayed, Acc. Chem. Res. 1, 8 (1968).
http://dx.doi.org/10.1021/ar50001a002
100.
100.Z. Havlas, J. W. Downing, and J. Michl, J. Phys. Chem. A 102, 5681 (1998).
http://dx.doi.org/10.1021/jp9804603
101.
101.J. S. Sears, C. D. Sherrill, and A. I. Krylov, J. Chem. Phys. 118, 9084 (2003).
http://dx.doi.org/10.1063/1.1568735
102.
102.L. V. Slipchenko and A. I. Krylov, J. Chem. Phys. 117, 4694 (2002).
http://dx.doi.org/10.1063/1.1498819
103.
103.S. Huzinaga and B. Miguel, Chem. Phys. Lett. 175, 289 (1990).
http://dx.doi.org/10.1016/0009-2614(90)80112-Q
104.
104.S. H. Kable, S. A. Reid, and T. J. Sears, Int. Rev. Phys. Chem. 28, 435 (2009).
http://dx.doi.org/10.1080/01442350903087792
105.
105.S. Nyambo, C. Karshenas, S. A. Reid, P. Lolur, and R. Dawes, J. Chem. Phys. 142, 214304 (2015).
http://dx.doi.org/10.1063/1.4921466
106.
106.C. D. Sherrill, A. I. Krylov, E. F. C. Byrd, and M. Head-Gordon, J. Chem. Phys. 109, 4171 (1998).
http://dx.doi.org/10.1063/1.477023
107.
107.A. I. Krylov, C. D. Sherrill, and M. Head-Gordon, J. Chem. Phys. 113, 6509 (2000).
http://dx.doi.org/10.1063/1.1311292
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/6/10.1063/1.4927785
Loading
/content/aip/journal/jcp/143/6/10.1063/1.4927785
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/6/10.1063/1.4927785
2015-08-11
2016-12-11

Abstract

We present a formalism and an implementation for calculating spin-orbit couplings(SOCs) within the EOM-CCSD (equation-of-motion coupled-cluster with single and double substitutions) approach. The following variants of EOM-CCSD are considered: EOM-CCSD for excitation energies (EOM-EE-CCSD), EOM-CCSD with spin-flip (EOM-SF-CCSD), EOM-CCSD for ionization potentials (EOM-IP-CCSD) and electron attachment (EOM-EA-CCSD). We employ a perturbative approach in which the SOCs are computed as matrix elements of the respective part of the Breit-Pauli Hamiltonian using zeroth-order non-relativistic wave functions. We follow the expectation-value approach rather than the response-theory formulation for property calculations. Both the full two-electron treatment and the mean-field approximation (a partial account of the two-electron contributions) have been implemented and benchmarked using several small molecules containing elements up to the fourth row of the periodic table. The benchmark results show the excellent performance of the perturbative treatment and the mean-field approximation. When used with an appropriate basis set, the errors with respect to experiment are below 5% for the considered examples. The findings regarding basis-set requirements are in agreement with previous studies. The impact of different correlation treatment in zeroth-order wave functions is analyzed. Overall, the EOM-IP-CCSD, EOM-EA-CCSD, EOM-EE-CCSD, and EOM-SF-CCSD wave functions yield SOCs that agree well with each other (and with the experimental values when available). Using an EOM-CCSD approach that provides a more balanced description of the target states yields more accurate results.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/6/1.4927785.html;jsessionid=IpzOYdaY02Pf5zmhl_jYWZn8.x-aip-live-03?itemId=/content/aip/journal/jcp/143/6/10.1063/1.4927785&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/6/10.1063/1.4927785&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/6/10.1063/1.4927785'
Right1,Right2,Right3,