Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.D. R. Yarkony, Int. Rev. Phys. Chem. 11, 195 (1992).
2.C. M. Marian, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 187 (2012).
3.D. G. Fedorov, S. Koseki, M. W. Schmidt, and M. S. Gordon, Int. Rev. Phys. Chem. 22, 551 (2003).
4.R. J. Cvetanović, “Addition of Atoms to Olefins in the Gas Phase,” in Advances in Photochemistry, edited by W. A. Noyes, G. S. Hammond, and J. N. Pitts (1963), Vol. 1, p. 115.
5.D. L. Singleton, S. Furuyama, R. J. Cvetanović, and R. S. Irwin, J. Chem. Phys. 63, 1003 (1975).
6.C. A. Taatjes, D. L. Osborn, T. M. Selby, G. Meloni, A. J. Trevitt, E. Epifanovsky, A. I. Krylov, B. Sirjean, E. Dames, and H. Wang, J. Phys. Chem. A 114, 3355 (2010).
7.M. Dupuis, J. J. Wendoloski, T. Takada, and W. A. Lester, J. Chem. Phys. 76, 481 (1982).
8.H. Sabbah, L. Biennier, I. A. Sims, Y. Georgievskii, S. J. Klippenstein, and I. W. M. Smith, Science 317, 102 (2007).
9.S. Zhao, W. Wu, H. Zhao, H. Wang, C. Yang, K. Liu, and H. Su, J. Phys. Chem. A 113, 23 (2009).
10.B. Fu, Y.-C. Han, J. M. Bowman, F. Leonori, N. Balucani, L. Angelucci, A. Occhiogrosso, R. Petrucci, and P. Casavecchia, J. Chem. Phys. 137, 22A532 (2012).
11.B. Fu, Y.-C. Han, J. M. Bowman, L. Angelucci, N. Balucani, F. Leonori, and P. Casavecchia, Proc. Natl. Acad. Sci. U. S. A. 109, 9733 (2012).
12.T. L. Nguyen, L. Vereecken, X. J. Hou, M. T. Nguyen, and J. Peeters, J. Phys. Chem. A 109, 7489 (2005).
13.D. Hodgson, H.-Y. Zhang, M. R. Nimlos, and J. T. McKinnon, J. Phys. Chem. A 105, 4316 (2001).
14.T. L. Nguen, J. Peeters, and L. Vereecken, J. Phys. Chem. A 111, 3836 (2007).
15.A. C. West, J. D. Lynch, B. Sellner, H. Lischka, W. L. Hase, and T. L. Windus, Theor. Chim. Acta 131, 1123 (2012).
16.Q. Cui and K. Morokuma, Theor. Chim. Acta 102, 127 (1999).
17.Q. Cui, K. Morokuma, J. M. Bowman, and S. J. Klippenstein, J. Chem. Phys. 110, 9469 (1999).
18.R. G. Sadygov and D. R. Yarkony, J. Chem. Phys. 107, 4994 (1997).
19.J. C. Tully, J. Chem. Phys. 61, 61 (1974).
20.G. E. Zahr, R. K. Preston, and W. H. Miller, J. Chem. Phys. 62, 1127 (1975).
21.N. Turro, Modern Molecular Photochemistry (Benjamin/Cummings Pub. Co., 1978).
22.M. Klessinger and J. Michl, Excited States and Photochemistry of Organic Molecules (VCH, 1995).
23.T. Ha and P. Tinnefeld, Annu. Rev. Phys. Chem. 63, 595 (2012).
24.Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature 440, 908 (2006).
25.M. A. Baldo, S. P. Forrest, and M. E. Thompson, Org. Electroluminescence 94, 267 (2005).
26.A. Tajti, P. G. Szalay, A. G. Császár, M. Kállay, J. Gauss, E. F. Valeev, B. A. Flowers, J. Vázquez, and J. F. Stanton, J. Chem. Phys. 121, 11599 (2004).
27.H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and Two Electron Atoms (Plenum, New York, 1977).
28.Relativistic Electronic Structure Theory, edited by P. Schwerdtfeger (Elsevier, Amsterdam, 2002).
29.H. Ågren, O. Vahtras, and B. Minaev, “Response theory and calculations of spin-orbit coupling phenomena in molecules,” in Advances in Quantum Chemistry (Academic Press, 1996), Vol. 27, pp. 71162.
30.B. A. Hess, C. M. Marian, U. Wahlgren, and O. Gropen, Chem. Phys. Lett. 251, 365 (1996).
31.T. R. Furlani and H. F. King, J. Chem. Phys. 82, 5577 (1985).
32.H. F. King and T. R. Furlani, J. Comput. Chem. 9, 771 (1988).
33.D. G. Fedorov and M. S. Gordon, J. Chem. Phys. 112, 5611 (2000).
34.O. Vahtras, H. Ågren, P. Jørgensen, H. J. Aa. Jensen, T. Helgaker, and J. Olsen, J. Chem. Phys. 96, 2118 (1992).
35.A. Berning, M. Schweizer, H.-J. Werner, P. Knowles, and P. Palmieri, Mol. Phys. 98, 1823 (2000).
36.F. Neese, J. Chem. Phys. 122, 034107 (2005).
37.O. Christiansen, J. Gauss, and B. Schimmelpfennig, Phys. Chem. Chem. Phys. 2, 965 (2000).
38.K. Klein and J. Gauss, J. Chem. Phys. 129, 194106 (2008).
39.L. A. Mück, “Highly accurate quantum chemistry: Spin-orbit splittings via multireference coupled-cluster methods and applications in heavy-atom main-group chemistry,” Ph.D. thesis, Johannes-Gutenberg Universität Mainz, 2013.
40.L. A. Mück and J. Gauss, J. Chem. Phys. 136, 111103 (2012).
41.S. G. Chiodo and N. Russo, Chem. Phys. Lett. 490, 90 (2010).
42.Z. Li, B. Suo, Y. Zhang, Y. Xiao, and W. Liu, Mol. Phys. 111, 3741 (2013).
43.Z. Tu, F. Wang, and X. Li, J. Chem. Phys. 136, 174102 (2012).
44.D.-D. Yang, F. Wang, and J. Guo, Chem. Phys. Lett. 531, 236 (2012).
45.Z. Wang, Z. Tu, and F. Wang, J. Chem. Theory Comput. 10, 5567 (2014).
46.H. E. Zimmerman and A. G. Kutateladze, J. Am. Chem. Soc. 118, 249 (1996).
47.L. Salem and C. Rowland, Angew. Chem., Int. Ed. Engl. 11, 92 (1972).
48.R. J. Bartlett, Annu. Rev. Phys. Chem. 32, 359 (1981).
49.R. J. Bartlett and J. F. Stanton, Rev. Comput. Chem. 5, 65 (1994).
50.R. J. Bartlett, Int. J. Mol. Sci. 3, 579 (2002).
51.A. I. Krylov, Annu. Rev. Phys. Chem. 59, 433 (2008).
52.R. J. Bartlett, Mol. Phys. 108, 2905 (2010).
53.K. Sneskov and O. Christiansen, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 566 (2012).
54.R. J. Bartlett, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 126 (2012).
55.H. Reisler and A. I. Krylov, Int. Rev. Phys. Chem. 28, 267 (2009).
56.P. A. Pieniazek, S. A. Arnstein, S. E. Bradforth, A. I. Krylov, and C. D. Sherrill, J. Chem. Phys. 127, 164110 (2007).
57.A. I. Krylov, Acc. Chem. Res. 39, 83 (2006).
58.E. P. Wigner, Group Theory (Academic Press, New York, 1959).
59.C. Eckart, Rev. Mod. Phys. 2, 305 (1930).
60.A. I. Krylov, Chem. Phys. Lett. 338, 375 (2001).
61.S. V. Levchenko and A. I. Krylov, J. Chem. Phys. 120, 175 (2004).
62.M. Wladyslawski and M. Nooijen, “The photoelectron spectrum of the NO3 radical revisited: A theoretical investigation of potential energy surfaces and conical intersections,” in ACS Symposium Series (American Chemical Society, 2002), Vol. 828, pp. 6592.
63.M. Nooijen, Int. J. Mol. Sci. 3, 656 (2002).
64.K. W. Sattelmeyer, H. F. Schaefer, and J. F. Stanton, Chem. Phys. Lett. 378, 42 (2003).
65.M. Musiał, A. Perera, and R. J. Bartlett, J. Chem. Phys. 134, 114108 (2011).
66.T. Kuś and A. I. Krylov, J. Chem. Phys. 135, 084109 (2011).
67.T. Kuś and A. I. Krylov, J. Chem. Phys. 136, 244109 (2012).
68.J. Shen and P. Piecuch, J. Chem. Phys. 138, 194102 (2013).
69.J. Shen and P. Piecuch, Mol. Phys. 112, 868 (2014).
70.H. J. Monkhorst, Int. J. Quantum Chem. 11, 421 (1977).
71.D. Mukherjee and P. K. Mukherjee, Chem. Phys. 39, 325 (1979).
72.H. Sekino and R. J. Bartlett, Int. J. Quantum Chem. 26, 255 (1984).
73.H. Koch, H. J. Aa. Jensen, P. Jørgensen, and T. Helgaker, J. Chem. Phys. 93, 3345 (1990).
74.M. Head-Gordon and T. J. Lee, “Single reference coupled cluster and perturbation theories of electronic excitation energies,” in Modern Ideas in Coupled Cluster Theory, edited byR. J. Bartlett (World Scientific, Singapore, 1997).
75. The reference determines the separation of the orbital space into the occupied and virtual subspaces. Here, we use indices i, j, k, … and a, b, c, … to denote the orbitals from the two subspaces. To denote orbitals that can be either occupied or virtual, the letters p, q, r, s, … will be used.
76.S. Koseki, M. Schmidt, and M. S. Gordon, J. Phys. Chem. 96, 10768 (1992).
77.T. Helgaker, S. Coriani, P. Jørgensen, K. Kristensen, J. Olsen, and K. Ruud, Chem. Rev. 112, 543 (2012).
78.P. B. Rozyczko, S. A. Perera, M. Nooijen, and R. J. Bartlett, J. Chem. Phys. 107, 6736 (1997).
79.M. Kállay and J. Gauss, J. Mol. Struct.: THEOCHEM 768, 71 (2006).
80.D. P. O’Neill, M. Kállay, and J. Gauss, J. Chem. Phys. 127, 134109 (2007).
81.J. F. Stanton and R. J. Bartlett, J. Chem. Phys. 98, 7029 (1993).
82.K. Nanda and A. I. Krylov, J. Chem. Phys. 142, 064118 (2015).
83.J. F. Stanton, J. Chem. Phys. 101, 8928 (1994).
84.R. Kobayashi, H. Koch, and P. Jørgensen, Chem. Phys. Lett. 219, 30 (1994).
85.See supplementary material at for additional details. This document can be reached through a direct link in the online article, HTML reference section or via the EPAPS homepage ([Supplementary Material]
86.S. V. Levchenko, T. Wang, and A. I. Krylov, J. Chem. Phys. 122, 224106 (2005).
87. For a state property, this expression needs to be modified as follows: .
88.X. Feng, A. V. Luzanov, and A. I. Krylov, J. Phys. Chem. Lett. 4, 3845 (2013).
89.S. Matsika, X. Feng, A. V. Luzanov, and A. I. Krylov, J. Phys. Chem. A 118, 11943 (2014).
90.B. Schimmelpfennig, AMFI, an atomic mean-field spin-orbit integral program, University of Stockholm, 1996.
91.Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kus, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock III, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguires, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A. DiStasio, Jr., H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W. D. Hanson-Heine, P. H. P. Harbach, A. W. Hauser, E. G. Hohenstein, Z. C. Holden, T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Laog, A. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J. Mayhall, C. M. Oana, R. Olivares-Amaya, D. P. O’Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, P. A. Pieniazek, A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, N. Sergueev, S. M. Sharada, S. Sharmaa, D. W. Small, A. Sodt, T. Stein, D. Stuck, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams, V. Vanovschi, S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhou, B. R. Brooks, G. K. L. Chan, D. M. Chipman, C. J. Cramer, W. A. Goddard III, M. S. Gordon, W. J. Hehre, A. Klamt, H. F. Schaefer III, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Warshel, X. Xu, A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-D. Chai, A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong, D. S. Lambrecht, W. Z. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov, P. M. W. Gill, and M. Head-Gordon, Mol. Phys. 113, 184 (2015).
92.J. F. Stanton, J. Gauss, M. E. Harding, and P. G. Szalay, with contributions from A. A. Auer, R. J. Bartlett, U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble, L. Cheng, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W. J. Lauderdale, F. Lipparini, D. A. Matthews, T. Metzroth, L. A. Mück, D. P. O’Neill, D. R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C. Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, and J. D. Watts; and the integral packages MOLECULE (J. Almlöf and P. R. Taylor), PROPS (P. R. Taylor), ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen. For the current version, see
93.S. Stopkowicz, “Higher-order perturbative relativistic corrections to energies and properties,” Ph.D. thesis, Johannes-Gutenberg Universität Mainz, 2011.
94.S. Stopkowicz and J. Gauss, J. Chem. Phys. 134, 064114 (2011).
95.L. E. McMurchie and E. R. Davidson, J. Chem. Phys. 26, 218 (1978).
96.J. F. Stanton and J. Gauss, Theor. Chim. Acta 91, 267 (1995).
97.J. F. Stanton and J. Gauss, J. Chem. Phys. 101, 8938 (1994).
98.J. F. Stanton and J. Gauss, J. Chem. Phys. 100, 4695 (1994).
99.M. A. El-Sayed, Acc. Chem. Res. 1, 8 (1968).
100.Z. Havlas, J. W. Downing, and J. Michl, J. Phys. Chem. A 102, 5681 (1998).
101.J. S. Sears, C. D. Sherrill, and A. I. Krylov, J. Chem. Phys. 118, 9084 (2003).
102.L. V. Slipchenko and A. I. Krylov, J. Chem. Phys. 117, 4694 (2002).
103.S. Huzinaga and B. Miguel, Chem. Phys. Lett. 175, 289 (1990).
104.S. H. Kable, S. A. Reid, and T. J. Sears, Int. Rev. Phys. Chem. 28, 435 (2009).
105.S. Nyambo, C. Karshenas, S. A. Reid, P. Lolur, and R. Dawes, J. Chem. Phys. 142, 214304 (2015).
106.C. D. Sherrill, A. I. Krylov, E. F. C. Byrd, and M. Head-Gordon, J. Chem. Phys. 109, 4171 (1998).
107.A. I. Krylov, C. D. Sherrill, and M. Head-Gordon, J. Chem. Phys. 113, 6509 (2000).

Data & Media loading...


Article metrics loading...



We present a formalism and an implementation for calculating spin-orbit couplings(SOCs) within the EOM-CCSD (equation-of-motion coupled-cluster with single and double substitutions) approach. The following variants of EOM-CCSD are considered: EOM-CCSD for excitation energies (EOM-EE-CCSD), EOM-CCSD with spin-flip (EOM-SF-CCSD), EOM-CCSD for ionization potentials (EOM-IP-CCSD) and electron attachment (EOM-EA-CCSD). We employ a perturbative approach in which the SOCs are computed as matrix elements of the respective part of the Breit-Pauli Hamiltonian using zeroth-order non-relativistic wave functions. We follow the expectation-value approach rather than the response-theory formulation for property calculations. Both the full two-electron treatment and the mean-field approximation (a partial account of the two-electron contributions) have been implemented and benchmarked using several small molecules containing elements up to the fourth row of the periodic table. The benchmark results show the excellent performance of the perturbative treatment and the mean-field approximation. When used with an appropriate basis set, the errors with respect to experiment are below 5% for the considered examples. The findings regarding basis-set requirements are in agreement with previous studies. The impact of different correlation treatment in zeroth-order wave functions is analyzed. Overall, the EOM-IP-CCSD, EOM-EA-CCSD, EOM-EE-CCSD, and EOM-SF-CCSD wave functions yield SOCs that agree well with each other (and with the experimental values when available). Using an EOM-CCSD approach that provides a more balanced description of the target states yields more accurate results.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd