Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/6/10.1063/1.4928055
1.
1.K. K. Tanaka, A. Kawano, and H. Tanaka, J. Chem. Phys. 140, 114302 (2014).
http://dx.doi.org/10.1063/1.4867909
2.
2.M. Duska, T. Nemec, J. Hruby, V. Vins, and B. Plankova, EPJ Web Conf. 92, 02013 (2015).
http://dx.doi.org/10.1051/epjconf/20159202013
3.
3.Y. J. Kim, B. E. Wyslouzil, G. Wilemski, J. Wölk, and R. Strey, J. Phys. Chem. A 108, 4365 (2004).
http://dx.doi.org/10.1021/jp037030j
4.
4.M. A. L. J. Fransen, J. Hruby, D. M. J. Smeulders, and M. E. H. van Dongen, J. Chem. Phys. 142, 164307 (2015).
http://dx.doi.org/10.1063/1.4919249
5.
5.A. Khan, C. H. Heath, U. M. Dieregsweiler, B. E. Wyslouzil, and R. Strey, J. Chem. Phys. 119, 3138 (2003).
http://dx.doi.org/10.1063/1.1590640
6.
6.A. A. Manka, D. Brus, A.-P. Hyvrinen, H. Lihavainen, J. Wolk, and R. Strey, J. Chem. Phys. 132, 244505 (2010).
http://dx.doi.org/10.1063/1.3427537
7.
7.V. B. Mikheev, P. M. Irving, N. S. Laulainen, S. E. Barlow, and V. V. Pervukhin, J. Chem. Phys. 116, 10772 (2002).
http://dx.doi.org/10.1063/1.1480274
8.
8.J. Wölk and R. Strey, J. Phys. Chem. B 105, 11683 (2001).
http://dx.doi.org/10.1021/jp0115805
9.
9.Y. Viisanen, R. Strey, and H. Reiss, J. Chem. Phys. 112, 8205 (2000).
http://dx.doi.org/10.1063/1.481368
10.
10.Y. Viisanen, R. Strey, and H. Reiss, J. Chem. Phys. 99, 4680 (1993).
http://dx.doi.org/10.1063/1.466066
11.
11.V. Holten, D. G. Labetski, and M. E. H. van Dongen, J. Chem. Phys. 123, 104505 (2005).
http://dx.doi.org/10.1063/1.2018638
12.
12.C. C. M. Luijten, K. J. Bosschaart, and M. E. H. van Dongen, J. Chem. Phys. 106, 8116 (1997).
http://dx.doi.org/10.1063/1.473818
13.
13.R. C. Miller, R. J. Anderson, J. L. Kassner, and D. E. Hagen, J. Chem. Phys. 78, 3204 (1983).
http://dx.doi.org/10.1063/1.445236
14.
14.D. Brus, V. Zdimal, and J. Smolik, J. Chem. Phys. 129, 174501 (2008).
http://dx.doi.org/10.1063/1.3000629
15.
15.M. P. Anisimov, P. K. Hopke, I. N. Shaimordanov, S. D. Shandakov, and L.-E. Magnusson, J. Chem. Phys. 115, 810 (2001).
http://dx.doi.org/10.1063/1.1379571
16.
16.J. Wölk and R. Strey, J. Phys. Chem. B 105, 11683 (2001).
http://dx.doi.org/10.1021/jp0115805
17.
17.D. Brus, V. Ždímal, and H. Uchtmann, J. Chem. Phys. 131, 074507 (2009).
http://dx.doi.org/10.1063/1.3211105
18.
18.M. Schweizer and L. M. C. Sagis, J. Chem. Phys. 141, 224102 (2014).
http://dx.doi.org/10.1063/1.4902885
19.
19.M. Horsch, J. Vrabec, and H. Hasse, Phys. Rev. E 78, 011603 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.011603
20.
20.R. Angelil, J. Diemand, K. K. Tanaka, and H. Tanaka, J. Chem. Phys. 140, 074303 (2014).
http://dx.doi.org/10.1063/1.4865256
21.
21.M. Horsch, H. Hasse, A. K. Shchekin, A. Agarwal, S. Eckelsbach, J. Vrabec, E. A. Müller, and G. Jackson, Phys. Rev. E 85, 031605 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.031605
22.
22.K. Yasuoka and M. Matsumoto, J. Chem. Phys. 109, 8451 (1998).
http://dx.doi.org/10.1063/1.477509
23.
23.K. K. Tanaka, H. Tanaka, T. Yamamoto, and K. Kawamura, J. Chem. Phys. 134, 204313 (2011).
http://dx.doi.org/10.1063/1.3593459
24.
24.J. Diemand, R. Angelil, K. K. Tanaka, and H. Tanaka, J. Chem. Phys. 139, 074309 (2013).
http://dx.doi.org/10.1063/1.4818639
25.
25.K. K. Tanaka, J. Diemand, R. Angélil, and H. Tanaka, J. Chem. Phys. 140, 194310 (2014).
http://dx.doi.org/10.1063/1.4875803
26.
26.K. K. Tanaka, K. Kawamura, H. Tanaka, and K. Nakazawa, J. Chem. Phys. 122, 184514 (2005).
http://dx.doi.org/10.1063/1.1896345
27.
27.H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).
http://dx.doi.org/10.1021/j100308a038
28.
28.H. Matsubara, T. Koishi, T. Ebisuzaki, and K. Yasuoka, J. Chem. Phys. 127, 214507 (2007).
http://dx.doi.org/10.1063/1.2803899
29.
29.K. Yasuoka and M. Matsumoto, J. Chem. Phys. 109, 8463 (1998).
http://dx.doi.org/10.1063/1.477510
30.
30.W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).
http://dx.doi.org/10.1063/1.445869
31.
31.J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005).
http://dx.doi.org/10.1063/1.2121687
32.
32.V. Molinero and E. B. Moore, J. Phys. Chem. B 113, 4008 (2009).
http://dx.doi.org/10.1021/jp805227c
33.
33.M. H. Factorovich, V. Molinero, and D. A. Scherlis, J. Am. Chem. Soc. 136, 4508 (2014).
http://dx.doi.org/10.1021/ja405408n
34.
34.V. Molinero, AIP Conf. Proc. 1527, 83 (2013).
http://dx.doi.org/10.1063/1.4803209
35.
35.B. Song and V. Molinero, J. Chem. Phys. 139, 054511 (2013).
http://dx.doi.org/10.1063/1.4816005
36.
36.V. Holten, D. T. Limmer, V. Molinero, and M. A. Anisimov, J. Chem. Phys. 138, 174501 (2013).
http://dx.doi.org/10.1063/1.4802992
37.
37.M. H. Factorovich, V. Molinero, and D. A. Scherlis, J. Chem. Phys. 140, 064111 (2014).
http://dx.doi.org/10.1063/1.4865137
38.
38.T. Li, D. Donadio, G. Russo, and G. Galli, Phys. Chem. Chem. Phys. 13, 19807 (2011).
http://dx.doi.org/10.1039/c1cp22167a
39.
39.A. V. Mokshin and B. N. Galimzyanov, J. Phys. Chem. B 116, 11959 (2012), pMID: 22957738.
http://dx.doi.org/10.1021/jp304830e
40.
40.F. Zipoli, T. Laino, S. Stolz, E. Martin, C. Winkelmann, and A. Curioni, J. Chem. Phys. 139, 094501 (2013).
http://dx.doi.org/10.1063/1.4819136
41.
41.S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
42.
42.R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (Taylor & Francis, Inc., Bristol, PA, USA, 1988).
43.
43.E. Pollock and J. Glosli, Comput. Phys. Commun. 95, 93 (1996).
http://dx.doi.org/10.1016/0010-4655(96)00043-4
44.
44.J. P. Ryckaert, G. Ciccotti, and J. Berendsen, J. Comput. Phys. 23, 327 (1977).
http://dx.doi.org/10.1016/0021-9991(77)90098-5
45.
45.S. Nosé, J. Chem. Phys. 81, 511 (1984).
http://dx.doi.org/10.1063/1.447334
46.
46.W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
47.
47.W. Shinoda, M. Shiga, and M. Mikami, Phys. Rev. B 69, 134103 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.134103
48.
48.F. H. Stillinger, J. Chem. Phys. 38, 1486 (1963).
http://dx.doi.org/10.1063/1.1776907
49.
49.V. I. Kalikmanov, Nucleation Theory, Lecture Notes in Physics (Springer, Dordrecht, 2013).
50.
50.D. W. Oxtoby, J. Phys.: Condens. Matter 4, 7627 (1992).
http://dx.doi.org/10.1088/0953-8984/4/38/001
51.
51.V. A. Shneidman, J. Chem. Phys. 141, 051101 (2014).
http://dx.doi.org/10.1063/1.4891980
52.
52.A. V. Mokshin and B. N. Galimzyanov, J. Chem. Phys. 140, 024104 (2014).
http://dx.doi.org/10.1063/1.4851438
53.
53.M. Volmer and A. Weber, Z. Phys. Chem. 119, 227 (1926).
54.
54.R. Becker and W. Döring, Ann. Phys. 416, 719 (1935).
http://dx.doi.org/10.1002/andp.19354160806
55.
55.J. Zeldovich, J. Exp. Theor. Phys. 12, 525 (1942).
56.
56.J. Feder, K. Russell, J. Lothe, and G. Pound, Adv. Phys. 15, 111 (1966).
http://dx.doi.org/10.1080/00018736600101264
57.
57.D. Kashchiev, Nucleation (Butterworth-Heinemann, 2000).
58.
58.I. Ford, Phys. Rev. E 56, 5615 (1997).
http://dx.doi.org/10.1103/PhysRevE.56.5615
59.
59.J. Wolk, R. Strey, C. H. Heath, and B. E. Wyslouzil, J. Chem. Phys. 117, 4954 (2002).
http://dx.doi.org/10.1063/1.1498465
60.
60.A. Laaksonen, I. J. Ford, and M. Kulmala, Phys. Rev. E 49, 5517 (1994).
http://dx.doi.org/10.1103/PhysRevE.49.5517
61.
61.A. Dillmann and G. E. A. Meier, J. Chem. Phys. 94, 3872 (1991).
http://dx.doi.org/10.1063/1.460663
62.
62.C. F. Delale and G. E. A. Meier, J. Chem. Phys. 98, 9850 (1993).
http://dx.doi.org/10.1063/1.464363
63.
63.V. I. Kalikmanov and M. E. H. van Dongen, J. Chem. Phys. 103, 4250 (1995).
http://dx.doi.org/10.1063/1.470662
64.
64.R. C. Tolman, J. Chem. Phys. 17, 333 (1949).
http://dx.doi.org/10.1063/1.1747247
65.
65.Ø. Wilhelmsen, D. Bedeaux, and D. Reguera, J. Chem. Phys. 142, 171103 (2015).
http://dx.doi.org/10.1063/1.4919689
66.
66.B. N. Hale, J. Chem. Phys. 122, 204509 (2005).
http://dx.doi.org/10.1063/1.1906213
67.
67.B. N. Hale and M. Thomason, Phys. Rev. Lett. 105, 046101 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.046101
68.
68.B. N. Hale, Phys. Rev. A 33, 4156 (1986).
http://dx.doi.org/10.1103/PhysRevA.33.4156
69.
69.G. A. Chapela, G. Saville, S. M. Thompson, and J. S. Rowlinson, J. Chem. Soc., Faraday Trans. 2 73, 1133 (1977).
http://dx.doi.org/10.1039/f29777301133
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/6/10.1063/1.4928055
Loading
/content/aip/journal/jcp/143/6/10.1063/1.4928055
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/6/10.1063/1.4928055
2015-08-11
2016-09-26

Abstract

We perform direct large molecular dynamics simulations of homogeneous SPC/E water nucleation, using up to ∼ 4 ⋅ 106 molecules. Our large system sizes allow us to measure extremely low and accurate nucleation rates, down to ∼ 1019 cm−3 s−1, helping close the gap between experimentally measured rates ∼ 1017 cm−3 s−1. We are also able to precisely measure size distributions, sticking efficiencies, cluster temperatures, and cluster internal densities. We introduce a new functional form to implement the Yasuoka-Matsumoto nucleation rate measurement technique (threshold method). Comparison to nucleation models shows that classical nucleation theory over-estimates nucleation rates by a few orders of magnitude. The semi-phenomenological nucleation model does better, under-predicting rates by at worst a factor of 24. Unlike what has been observed in Lennard-Jones simulations, post-critical clusters have temperatures consistent with the run average temperature. Also, we observe that post-critical clusters have densities very slightly higher, ∼ 5%, than bulk liquid. We re-calibrate a Hale-type vs. scaling relation using both experimental and simulation data, finding remarkable consistency in over 30 orders of magnitude in the nucleation rate range and 180 K in the temperature range.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/6/1.4928055.html;jsessionid=PN5PUeeOVAqKTYLwNPVxaqSk.x-aip-live-03?itemId=/content/aip/journal/jcp/143/6/10.1063/1.4928055&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/6/10.1063/1.4928055&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/6/10.1063/1.4928055'
Right1,Right2,Right3,