Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/6/10.1063/1.4928076
1.
1.E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933).
http://dx.doi.org/10.1103/PhysRev.43.804
2.
2.E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764770 (1935).
http://dx.doi.org/10.1063/1.1749590
3.
3.R. T. Howie, C. L. Guillaume, T. Scheler, A. F. Goncharov, and E. Gregoryanz, Phys. Rev. Lett. 108(12), 125501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.125501
4.
4.M. I. Eremets and I. A. Troyan, Nat. Mater. 10(12), 927931 (2011).
http://dx.doi.org/10.1038/nmat3175
5.
5.C. S. Zha, Z. Liu, M. Ahart, R. Boehler, and R. J. Hemley, Phys. Rev. Lett. 110(21), 217402 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.217402
6.
6.P. Loubeyre, F. Occelli, and P. Dumas, Phys. Rev. B 87(13), 134101 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.134101
7.
7.C. J. Pickard and R. J. Needs, Nat. Phys. 3, 473 (2007).
http://dx.doi.org/10.1038/nphys625
8.
8.C. J. Pickard, M. Martinez-Canales, and R. J. Needs, Phys. Rev. B 85, 214114 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.214114
9.
9.C. S. Zha, Z. Liu, and R. J. Hemley, Phys. Rev. Lett. 108, 146402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.146402
10.
10.B. Rousseau and N. W. Ashcroft, Phys. Rev. Lett. 101, 046407 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.046407
11.
11.C. J. Pickard and R. J. Needs, Phys. Rev. Lett. 102, 146401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.146401
12.
12.M. Hanfland, R. J. Hemley, and H. K. Mao, Phys. Rev. Lett. 70, 37603763 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.3760
13.
13.C. L. Guillaume, E. Gregoryanz, O. Degtyareva, M. I. McMahon, S. Evans, M. Hanfland, M. Guthrie, S. V. Sinogeikin, and H. K. Mao, Nat. Phys. 7, 211214 (2011).
http://dx.doi.org/10.1038/nphys1864
14.
14.F. Datchi, P. Loubeyre, and R. LeToullec, Phys. Rev. B 61, 65356546 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.6535
15.
15.E. Gregoryanz, A. F. Goncharov, K. Matsuishi, H. Mao, and R. J. Hemley, Phys. Rev. Lett. 90, 175701 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.175701
16.
16.S. Deemyad and I. F. Silvera, Phys. Rev. Lett. 100, 155701 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.155701
17.
17.M. I. Eremets and I. A. Troyan, JETP Lett. 89, 198203 (2009).
http://dx.doi.org/10.1134/S0021364009040031
18.
18.Y. Feng, J. Chen, D. Alfè, X. Z. Li, and E. Wang, J. Chem. Phys. 142, 064506 (2015).
http://dx.doi.org/10.1063/1.4907752
19.
19.J. Chen, X. Z. Li, Q. Zhang, M. I. J. Probert, C. J. Pickard, R. J. Needs, A. Michaelides, and E. Wang, Nature Commun. 4, 2064 (2013).
http://dx.doi.org/10.1038/ncomms3064
20.
20.I. I. Naumov, R. E. Cohen, and R. J. Hemley, Phys. Rev. B 88, 045125 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.045125
21.
21.J. B. Neaton and N. W. Ashcroft, Nature 400, 141144 (1999).
http://dx.doi.org/10.1038/22067
22.
22.N. W. Ashcroft, J. Phys.: Condens. Matter 16, S945S952 (2004).
http://dx.doi.org/10.1088/0953-8984/16/14/003
23.
23.M. Cohen and V. Heine, in Solid State Physics: Advances and Applications, edited byH. Ehrenreich, F. Seitz, and D. Turnbull (Academic Press, New York, 1970), Vol.24, p. 38.
24.
24.V. Heine, in Solid State Physics: Advances Applications, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic Press, New York, 1970), Vol. 24, p. 1.
25.
25.V. Heine and D. Weaire, in Solid State Physics: Advances and Applications, edited byH. Ehrenreich, F. Seitz, and D. Turnbull (Academic Press, New York, 1970), Vol.24, p. 250.
26.
26.Y. Ma, M. Eremets, A. P. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. O. Lyakhov, M. Valle, and V. Prakapenka, Nature 458, 182185 (2009).
http://dx.doi.org/10.1038/nature07786
27.
27.T. Matsuoka, M. Sakata, Y. Nakamoto, K. Takahama, K. Ichimaru, K. Mukai, K. Ohta, N. Hirao, Y. Ohishi, and K. Shimizu, Phys. Rev. B 89, 144103 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.144103
28.
28.T. Matsuoka and K. Shimizu, Nature 458, 186189 (2009).
http://dx.doi.org/10.1038/nature07827
29.
29.E. G. Maksimov, M. V. Magnitskaya, and V. E. Fortov, Phys.-Usp. 48, 761780 (2005).
http://dx.doi.org/10.1070/PU2005v048n08ABEH002315
30.
30.M. I. McMahon and R. J. Nelmes, Chem. Soc. Rev. 35, 943963 (2006).
http://dx.doi.org/10.1039/b517777b
31.
31.V. F. Degtyareva, Phys.-Usp. 49, 369388 (2006).
http://dx.doi.org/10.1070/PU2006v049n04ABEH005948
32.
32.V. F. Degtyareva, High Pressure Res. 30, 343371 (2010).
http://dx.doi.org/10.1080/08957959.2010.508877
33.
33.V. E. Fortov and V. B. Mintsev, Russ. Chem. Rev. 82, 597615 (2013).
http://dx.doi.org/10.1070/RC2013v082n07ABEH004394
34.
34.B. Rousseau, Y. Xie, Y. Ma, and A. Bergara, Eur. Phys. J. B 81, 114 (2011).
http://dx.doi.org/10.1140/epjb/e2011-10972-9
35.
35.M. S. Miao and R. Hoffmann, Acc. Chem. Res. 47, 13111317 (2014).
http://dx.doi.org/10.1021/ar4002922
36.
36.H. G. von Schnering and R. Nesper, Angew. Chemie, Int. Ed. 26, 10591080 (1987).
http://dx.doi.org/10.1002/anie.198710593
37.
37.J. B. Neaton and N. W. Ashcroft, Phys. Rev. Lett. 86, 28302833 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2830
38.
38.U. Schwarz, O. Jepsen, and K. Syassen, Solid State Commun. 113, 643648 (2000).
http://dx.doi.org/10.1016/S0038-1098(99)00527-X
39.
39.M. Hanfland, K. Syassen, N. E. Christensen, and D. L. Novikov, Nature 408, 174 (2000).
http://dx.doi.org/10.1038/35041515
40.
40.B. Rousseau, K. Uehara, D. D. Klug, and J. S. Tse, ChemPhysChem 6, 1703 (2005).
http://dx.doi.org/10.1002/cphc.200500117
41.
41.M. Marques, M. I. McMahon, E. Gregoryanz, M. Hanfland, C. L. Guillaume, C. J. Pickard, G. J. Ackland, and R. J. Nelmes, Phys. Rev. Lett. 106, 095502 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.095502
42.
42.E. Zurek, O. Jepsen, and O. K. Andersen, ChemPhysChem 6, 1934 (2005).
http://dx.doi.org/10.1002/cphc.200500133
43.
43.J. L. Dye, Nature 365, 10 (1993).
http://dx.doi.org/10.1038/365010a0
44.
44.J. L. Dye, M. J. Wagner, G. Overney, R. H. Huang, T. F. Nagy, and D. Tomanek, J. Am. Chem. Soc. 118, 73297336 (1996).
http://dx.doi.org/10.1021/ja960548z
45.
45.D. J. Singh, H. Krakauer, C. Haas, and W. E. Pickett, Nature 365, 3942 (1993).
http://dx.doi.org/10.1038/365039a0
46.
46.R. Rencsok, T. A. Kaplan, and J. F. Harrison, J. Chem. Phys. 98, 97589764 (1993).
http://dx.doi.org/10.1063/1.464354
47.
47.R. Rousseau and D. Marx, Chem. Euro. J. 6, 29822993 (2000).
http://dx.doi.org/10.1002/1521-3765(20000818)6:16<2982::AID-CHEM2982>3.0.CO;2-S
48.
48.A. M. Pendas, M. A. Blanco, A. Costales, P. M. Sanchez, and V. Luana, Phys. Rev. Lett. 83, 19301933 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1930
49.
49.Y. Yao, J. S. Tse, and D. D. Klug, Phys. Rev. Lett. 102, 115503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.115503
50.
50.I. I. Naumov and R. J. Hemley, Phys. Rev. Lett. 114, 156403 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.156403
51.
51.A. F. Goncharov, J. S. Tse, H. Wang, J. Yang, V. V. Struzhkin, R. T. Howie, and E. Gregoryanz, Phys. Rev. B 87, 024101 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.024101
52.
52.J. Ihm, A. Zunger, and M. Cohen, J. Phys. C: Solid State Phys. 12, 4409 (1979).
http://dx.doi.org/10.1088/0022-3719/12/21/009
53.
53.A. P. P. Natalense, C. S. Sartori, L. G. Ferreira, and M. A. P. Lima, Phys. Rev. A 54, 5436 (1996).
http://dx.doi.org/10.1103/PhysRevA.54.5435
54.
54.M. T. Yin, Phys. Rev. B 27, 7769 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.7769
55.
55.M. H. McAdon and W. A. Goddard III, Phys. Rev. Lett. 55, 25632566 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.2563
56.
56.M. H. McAdon and W. A. Goddard III, J. Phys. Chem. 91, 26072626 (1987).
http://dx.doi.org/10.1021/j100294a032
57.
57.U. Häussermann and S. I. Simak, Phys. Rev. B 64, 245114 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.245114
58.
58.N. W. Ashcroft and N. D. Mermin, Solid State Physics, 1st ed. (Saunders College, Philadelphia, PA, 1976).
59.
59.N. W. Ashcroft, J. Phys. C.: Solid State Phys. 1, 232 (1968).
http://dx.doi.org/10.1088/0022-3719/1/1/326
60.
60.M. B. Lepetit, E. Apra, J. P. Malrieu, and R. Dovesi, Phys. Rev. B 46, 12974 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.12974
61.
61.J. C. Boettger and S. B. Trickey, Phys. Rev. B 32, 3391 (1986).
http://dx.doi.org/10.1103/PhysRevB.32.3391
62.
62.B. Edwards and N. W. Ashcroft, Nature 388, 652655 (1997).
http://dx.doi.org/10.1038/41645
63.
63.T. Kato, Commun. Pure Appl. Math. 10, 151177 (1957).
http://dx.doi.org/10.1002/cpa.3160100201
64.
64.I. I. Naumov and R. J. Hemley, Acc. Chem. Res. 47, 35513559 (2014).
http://dx.doi.org/10.1021/ar5002654
65.
65.A. K. McMahan, Physica B+C 139-140, 3141 (1986).
http://dx.doi.org/10.1016/0378-4363(86)90519-X
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/6/10.1063/1.4928076
Loading
/content/aip/journal/jcp/143/6/10.1063/1.4928076
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/6/10.1063/1.4928076
2015-08-12
2016-10-01

Abstract

Though hydrogen and lithium have been assigned a common column of the periodic table, their crystalline states under common conditions are drastically different: the former at temperatures where it is crystalline is a molecular insulator, whereas the latter is a metal that takes on simple structures. On compression, however, the two come to share some structural and other similarities associated with the and transitions, respectively. To gain a deeper understanding of differences and parallels in the behaviors of compressed hydrogen and lithium, we performed an comparative study of these systems in selected structures. Both elements undergo a continuous pressure-induced - electronic transition, though this is at a much earlier stage of development for H. The valence charge density accumulates in interstitial regions in Li but not in H in structures examined over the same range of compression. Moreover, the valence charge density distributions or electron localization functions for the same arrangement of atoms each other as one proceeds from one element to the other. Application of the virial theorem shows that the kinetic and potential energies jump across the first-order phase transitions in H and Li are opposite in sign because of non-local effects in the Li pseudopotential. Finally, the common tendency of compressed H and Li to adopt three-fold coordinated structures as found is explained by the fact that such structures are capable of yielding a profound pseudogap in the electronic densities of states at the Fermi level, thereby reducing the kinetic energy. These results have implications for the phase diagrams of these elements and also for the search for new structures with novel properties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/6/1.4928076.html;jsessionid=kmohoQi5e4Y4Shgfb_pcelJj.x-aip-live-02?itemId=/content/aip/journal/jcp/143/6/10.1063/1.4928076&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/6/10.1063/1.4928076&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/6/10.1063/1.4928076'
Right1,Right2,Right3,