Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/7/10.1063/1.4928588
1.
1.G. T. Seaborg, W. J. Blaedel, and M. T. Walling, Jr., “Method for separation of plutonium from uranium and fission products by solvent extraction,” U.S. patent 2,950,166 (23 August 1960).
2.
2.C. Prunier, F. Boussard, L. Koch, and M. Coquerelle, Nucl. Technol. 119, 141 (1997).
3.
3.C. o. E. T. f. D. S. F. Treatment, Electrometallurgical Techniques for DOE Spent Fuel Treatment, Final report (N. A. Press, 2000).
4.
4.T. Inoue, Progr. Nucl. Energy 40, 547 (2002).
http://dx.doi.org/10.1016/S0149-1970(02)00049-5
5.
5.H. F. McFarlane, in Encyclopedia of Energy (Elsevier, 2004).
6.
6.H.-L. Ian, Nuclear Energy in the 21st Century (World Nuclear University Press, London, 2006).
7.
7.Z. Yoshida, S. G. Johnson, T. Kimura, and J. R. Krsul, in The Chemistry of the Actinide and Transactinide Elements, edited by L. R. Morss, N. M. Edelstein, and J. Fuger (Springer, Dordrecht, 2006), p. 699.
8.
8.E. G. Rauh and R. J. Ackermann, J. Chem. Phys. 62, 1584 (1975).
http://dx.doi.org/10.1063/1.430578
9.
9.J. K. Gibson, R. G. Haire, J. Marçalo, M. Santos, A. Pires de Matos, and J. P. Leal, J. Nucl. Mater. 344, 24 (2005).
http://dx.doi.org/10.1016/j.jnucmat.2005.04.010
10.
10.J. K. Gibson, R. G. Haire, M. Santos, J. Marçalo, and A. Pires de Matos, J. Phys. Chem. A 109, 2768 (2005).
http://dx.doi.org/10.1021/jp0447340
11.
11.J. Marçalo and J. K. Gibson, J. Phys. Chem. A 113, 12599 (2009).
http://dx.doi.org/10.1021/jp904862a
12.
12.I. Infante, A. Kovács, G. La Macchia, A. R. M. Shahi, J. K. Gibson, and L. Gagliardi, J. Phys. Chem. A 114, 6007 (2010).
http://dx.doi.org/10.1021/jp1016328
13.
13.A. Kovács and R. J. M. Konings, J. Phys. Chem. A 115, 6646 (2011).
http://dx.doi.org/10.1021/jp202538k
14.
14.C. Keller, The Chemistry of the Transuranium Elements (Verlag Chemie, Weinheim/Bergstr., 1971).
15.
15.J. L. Ryan, in Lanthanides and Actinides, MTP International Review of Science, Inorganic Chemistry: Series One , Vol.7, edited byK. W. Bagnall (Butterworth, London, 1972), p. 323.
16.
16.R. Sjoblom and J. C. Hindman, J. Am. Chem. Soc. 73, 1744 (1951).
http://dx.doi.org/10.1021/ja01148a091
17.
17.W. C. Waggener, J. Phys. Chem. 62, 382 (1958).
http://dx.doi.org/10.1021/j150561a050
18.
18.P. G. Hagan and J. M. Cleveland, J. Inorg. Nucl. Chem. 28, 2905 (1966).
http://dx.doi.org/10.1016/0022-1902(66)80016-7
19.
19.S. Matsika, R. M. Pitzer, and D. T. Reed, J. Phys. Chem. A 104, 11983 (2000).
http://dx.doi.org/10.1021/jp002580s
20.
20.D. Cohen and B. Taylor, J. Inorg. Nucl. Chem. 22, 151 (1962).
http://dx.doi.org/10.1016/0022-1902(61)80238-8
21.
21.A. F. Leung and E. Y. Wong, Phys. Rev. 187, 504 (1969).
http://dx.doi.org/10.1103/PhysRev.187.504
22.
22.O. M. Stafsudd, A. F. Leung, and E. Y. Wong, Phys. Rev. 180, 339 (1969).
http://dx.doi.org/10.1103/PhysRev.180.339
23.
23.R. G. Denning, J. O. W. Norris, and D. Brown, Mol. Phys. 46, 287 (1982).
http://dx.doi.org/10.1080/00268978200101261
24.
24.R. G. Denning, J. O. W. Norris, and D. Brown, Mol. Phys. 46, 325 (1982).
http://dx.doi.org/10.1080/00268978200101271
25.
25.S. Matsika and R. M. Pitzer, J. Phys. Chem. A 105, 637 (2001).
http://dx.doi.org/10.1021/jp003032h
26.
26.B. Bleaney, Discuss. Faraday Soc. 19, 112 (1955).
http://dx.doi.org/10. 1039/df9551900112
27.
27.J. C. Eisenstein and M. H. L. Pryce, J. Res. Natl. Bur. Stand. 70A, 165 (1966).
http://dx.doi.org/10.6028/jres.070A.013
28.
28.J. C. Eisenstein and M. H. L. Pryce, J. Res. Natl. Bur. Stand. 69A, 217 (1965).
http://dx.doi.org/10.6028/jres.069A.022
29.
29.S. Matsika and R. M. Pitzer, J. Phys. Chem. A 104, 4064 (2000).
http://dx.doi.org/10.1021/jp993767q
30.
30.I. Infante, A. S. P. Gomes, and L. Visscher, J. Chem. Phys. 125, 074301 (2006).
http://dx.doi.org/10.1063/1.2244564
31.
31.A. S. P. Gomes, C. R. Jacob, and L. Visscher, Phys. Chem. Chem. Phys. 10, 5353 (2008).
http://dx.doi.org/10.1039/b805739g
32.
32.C. Danilo, V. Vallet, J.-P. Flamenta, and U. Wahlgren, Phys. Chem. Chem. Phys. 12, 1116 (2010).
http://dx.doi.org/10.1039/B914222C
33.
33.J. Su, W. H. E. Schwarz, and J. Li, Inorg. Chem. 51, 3231 (2012).
http://dx.doi.org/10.1021/ic202712p
34.
34.F. Gendron, D. Páez-Hernández, F.-P. Notter, B. Pritchard, H. Bolvin, and J. Autschbach, Chem.–Eur. J. 20, 7997 (2014).
http://dx.doi.org/10.1002/chem.201305039
35.
35.F. Gendron, B. Pritchard, H. Bolvin, and J. Autschbach, Inorg. Chem. 53, 85778592 (2014).
http://dx.doi.org/10.1021/ic501168a
36.
36.P. A. Christiansen, W. C. Ermler, and K. S. Pitzer, Annu. Rev. Phys. Chem. 36, 407 (1988).
http://dx.doi.org/10.1146/annurev.pc.36.100185.002203
37.
37.M.-S. Liao, T. Kar, and S. Scheiner, J. Phys. Chem. A 108, 3056 (2004).
http://dx.doi.org/10.1021/jp036927d
38.
38.B. B. Averkiev, M. Mantina, R. Valero, I. Infante, A. Kovács, D. G. Truhlar, and L. Gagliardi, Theor. Chem. Acc. 129, 657 (2011).
http://dx.doi.org/10.1007/s00214-011-0913-0
39.
39.A. Kovács, P. Pogány, and R. J. M. Konings, Inorg. Chem. 51, 4841 (2012).
http://dx.doi.org/10.1021/ic300275y
40.
40.D. Rios, M. C. Michelini, A. F. Lucena, J. Marçalo, T. H. Bray, and J. K. Gibson, Inorg. Chem. 51, 6603 (2012).
http://dx.doi.org/10.1021/ic3001625
41.
41.M. Garcia-Hernandez, C. Lauterbach, S. Krüger, A. Matveev, and N. Rösch, J. Comput. Chem. 23, 834 (2002).
http://dx.doi.org/10.1002/jcc.10056
42.
42.G. Karlström, R. Lindh, P.-Å. Malmqvist, B. O. Roos, U. Ryde, V. Veryazov, P.-O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady, and L. Seijo, Comput. Mat. Sci. 28, 222 (2003).
http://dx.doi.org/10.1016/S0927-0256(03)00109-5
43.
43.B. O. Roos, in Advances in Chemical Physics, Ab InitioMethods in Quantum Chemistry - II, edited by K. P. Lawley (John Wiley & Sons Ltd., Chichester, 1987), p. 399.
44.
44.K. Andersson, P.-Å. Malmqvist, B. O. Roos, A. Sadlej, and K. Wolinski, J. Phys. Chem. 94, 5483 (1990).
http://dx.doi.org/10.1021/j100377a012
45.
45.K. Andersson, P.-Å. Malmqvist, and B. O. Roos, J. Chem. Phys. 96, 1218 (1992).
http://dx.doi.org/10.1063/1.462209
46.
46.N. Douglas and N. M. Kroll, Ann. Phys. 82, 89 (1974).
http://dx.doi.org/10.1016/0003-4916(74)90333-9
47.
47.B. A. Hess, Phys. Rev. A. 33, 3742 (1986).
http://dx.doi.org/10.1103/PhysRevA.33.3742
48.
48.B. O. Roos, R. Lindh, P.-Å. Malmqvist, V. Veryazov, and P.-O. Widmark, Chem. Phys. Lett. 409, 295 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.05.011
49.
49.B. O. Roos, R. Lindh, P.-Å. Malmqvist, V. Veryazov, and P.-O. Widmark, J. Phys. Chem. A 108, 2851 (2004).
http://dx.doi.org/10.1021/jp031064+
50.
50.B. O. Roos and P.-Å. Malmqvist, Phys. Chem. Chem. Phys. 6, 2919 (2004).
http://dx.doi.org/10.1039/b401472n
51.
51.L. Gagliardi, G. F. La, Manna, and B. O. Roos, Faraday Discuss. 124, 63 (2003).
http://dx.doi.org/10.1039/b211224h
52.
52.L. Gagliardi and B. O. Roos, Inorg. Chem. 42, 1599 (2003).
http://dx.doi.org/10.1021/ic0261068
53.
53.L. Gagliardi, J. Am. Chem. Soc. 125, 7504 (2003).
http://dx.doi.org/10.1021/ja035385a
54.
54.F. Ferrante, L. Gagliardi, B. E. Bursten, and A. P. Sattelberger, Inorg. Chem. 44, 8476 (2005).
http://dx.doi.org/10.1021/ic050406i
55.
55.L. Gagliardi, M. C. Heaven, J. W. Krogh, and B. O. Roos, J. Am. Chem. Soc. 127, 86 (2005).
http://dx.doi.org/10.1021/ja044940l
56.
56.L. Gagliardi, P. Pyykkö, and B. O. Roos, Phys. Chem. Chem. Phys. 7, 2415 (2005).
http://dx.doi.org/10.1039/b505593h
57.
57.B. O. Roos, P.-Å. Malmqvist, and L. Gagliardi, J. Am. Chem. Soc. 128, 17000 (2006).
http://dx.doi.org/10.1021/ja066615z
58.
58.L. Gagliardi and C. J. Cramer, Inorg. Chem. 45, 9442 (2006).
http://dx.doi.org/10.1021/ic061306v
59.
59.L. Gagliardi, Theor Chem. Acc. 116, 307 (2006).
http://dx.doi.org/10.1007/s00214-005-0031-y
60.
60.L. Gagliardi and B. O. Roos, Chem. Soc. Rev. 36, 893 (2007).
http://dx.doi.org/10.1039/b601115m
61.
61.B. O. Roos, A. Borin, and L. Gagliardi, Angew. Chem., Int. Ed. 46, 1469 (2007).
http://dx.doi.org/10.1002/anie.200603600
62.
62.I. Infante, J. Raab, J. T. Lyon, B. Liang, L. Andrews, and L. Gagliardi, J. Phys. Chem. A 111, 11996 (2007).
http://dx.doi.org/10.1021/jp076279o
63.
63.I. Infante, L. Gagliardi, and G. E. Scuseria, J. Am. Chem. Soc. 130, 7459 (2008).
http://dx.doi.org/10.1021/ja800847j
64.
64.I. Infante, L. Gagliardi, X. F. Wang, and L. Andrews, J. Phys. Chem. A 113, 2446 (2009).
http://dx.doi.org/10.1021/jp8099658
65.
65.P. Pogány, A. Kovács, D. Szieberth, and R. J. M. Konings, Struct. Chem. 23, 1281 (2012).
http://dx.doi.org/10.1007/s11224-012-0075-2
66.
66.P. Pogány, A. Kovács, Z. Varga, F. M. Bickelhaupt, and R. J. M. Konings, J. Phys. Chem. A 116, 747 (2012).
http://dx.doi.org/10.1021/jp210190m
67.
67.A. Kovács, I. Infante, and L. Gagliardi, Struct. Chem. 24, 917 (2013).
http://dx.doi.org/10.1007/s11224-013-0251-z
68.
68.A. Kovács, R. J. M. Konings, Z. Varga, and D. Szieberth, J. Phys. Chem. A 117, 11357 (2013).
http://dx.doi.org/10.1021/jp407855j
69.
69.P. Pogány, A. Kovács, and R. J. M. Konings, Eur. J. Inorg. Chem. 2014, 1062.
http://dx.doi.org/10.1002/ejic.201301425
70.
70.P. Pogány, A. Kovács, and R. J. M. Konings, Int. J. Quantum Chem. 114, 587 (2014).
http://dx.doi.org/10.1002/qua.24628
71.
71.A. Corney, Atomic and Laser Spectroscopy (Claredon Press, Oxford, 2006).
72.
72.O. Laporte and W. F. Meggers, J. Opt. Soc. Am. 11, 459 (1925).
http://dx.doi.org/10.1364/JOSA.11.000459
73.
73.S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem. 8, 61 (1974).
http://dx.doi.org/10.1002/qua.560080106
74.
74.G. La Macchia, I. Infante, J. Raab, J. K. Gibson, and L. Gagliardi, Phys. Chem. Chem. Phys. 10, 7278 (2008).
http://dx.doi.org/10.1039/b810744k
75.
75.R. Tyagi, Ph.D. thesis, Ohio State University, 2005.
76.
76.See supplementary material at http://dx.doi.org/10.1063/1.4928588 for tables including some computational technical details and the relative energies, spectroscopic terms, major components, and characteristic orbital populations of the SF and SO states from the present calculations.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/7/10.1063/1.4928588
Loading
/content/aip/journal/jcp/143/7/10.1063/1.4928588
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/7/10.1063/1.4928588
2015-08-19
2016-12-11

Abstract

The electronic spectra of neutral NpO and NpO as well as of their mono- (NpO+, NpO +) and dications (NpO2+, NpO 2+) were studied using multiconfigurational relativistic quantum chemical calculations at the complete active space self-consistent field/CASPT2 level of theory taking into account spin-orbit coupling. The active space included 16 orbitals: all the 7s, 6d, and 5f orbitals of neptunium together with selected orbitals of oxygen. The vertical excitation energies on the ground state geometries have been computed up to ca. 35 000 cm−1. The gas-phase electronic spectra were evaluated on the basis of the computed Einstein coefficients at 298 K and 3000 K. The computed vertical transition energies show good agreement with previous condensed-phase results on NpO + and NpO 2+.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/7/1.4928588.html;jsessionid=90iwy6gU-899jnqnG6wNCD5K.x-aip-live-06?itemId=/content/aip/journal/jcp/143/7/10.1063/1.4928588&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/7/10.1063/1.4928588&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/7/10.1063/1.4928588'
Right1,Right2,Right3,