Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/8/10.1063/1.4928521
1.
1.R. Surana, A. Pyne, and R. Suryanarayanan, Pharm. Res. 21, 867 (2004).
http://dx.doi.org/10.1023/B:PHAM.0000026441.77567.75
2.
2.C. T. Powell, K. Paeng, Z. Chen, R. Richert, L. Yu, and M. D. Ediger, J. Phys. Chem. B 118, 8203 (2014).
http://dx.doi.org/10.1021/jp501301y
3.
3.C. Neuber, A. Ringk, T. Kolb, F. Wieberger, P. Strohriegl, H.-W. Schmidt, V. Fokkema, M. Cooke, C. Rawlings, U. Dürig, A. W. Knoll, J.-F. de Marneffe, P. De Schepper, M. Kaestner, Y. Krivoshapkina, M. Budden, and I. W. Rangelow, in SPIE Advanced Lithography, edited by D. J. Resnick and C. Bencher (International Society for Optics and Photonics, 2014), p. 90491V.
4.
4.A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, Chem. Mater. 16, 4556 (2004).
http://dx.doi.org/10.1021/cm049473l
5.
5.H. L. Zhong, S. W. Man, H. Fukutani, and Y. Tao, Org. Lett. 8, 4271 (2006).
http://dx.doi.org/10.1021/ol0615477
6.
6.Y. Shirota and H. Kageyama, Chem. Rev. 107, 953 (2007).
http://dx.doi.org/10.1021/cr050143+
7.
7.S. F. Swallen, K. L. Kearns, S. Satija, K. Traynor, R. J. McMahon, and M. D. Ediger, J. Chem. Phys. 128, 214514 (2008).
http://dx.doi.org/10.1063/1.2919570
8.
8.S. S. Dalal, A. Sepulveda, G. K. Pribil, Z. Fakhraai, and M. D. Ediger, J. Chem. Phys. 136, 10 (2012).
http://dx.doi.org/10.1063/1.4719532
9.
9.S. S. Dalal and M. D. Ediger, J. Phys. Chem. Lett. 3, 1229 (2012).
http://dx.doi.org/10.1021/jz3003266
10.
10.S. S. Dalal, Z. Fakhraai, and M. D. Ediger, J. Phys. Chem. B 117, 15415 (2013).
http://dx.doi.org/10.1021/jp405005n
11.
11.K. L. Kearns, S. F. Swallen, M. D. Ediger, T. Wu, and L. Yu, J. Chem. Phys. 127, 9 (2007).
http://dx.doi.org/10.1063/1.2789438
12.
12.E. León-Gutierrez, G. Garcia, A. F. Lopeandía, J. Fraxedas, M. T. Clavaguera-Mora, and J. Rodríguez-Viejo, J. Chem. Phys. 129, 181101 (2008).
http://dx.doi.org/10.1063/1.3009766
13.
13.K. J. Dawson, K. L. Kearns, M. D. Ediger, M. J. Sacchetti, and G. D. Zografi, J. Phys. Chem. B 113, 2422 (2009).
http://dx.doi.org/10.1021/jp808838t
14.
14.K. L. Kearns, S. F. Swallen, M. D. Ediger, T. Wu, Y. Sun, and L. Yu, J. Phys. Chem. B 112, 4934 (2008).
http://dx.doi.org/10.1021/jp7113384
15.
15.K. L. Kearns, K. R. Whitaker, M. D. Ediger, H. Huth, and C. Schick, J. Chem. Phys. 133, 014702 (2010).
http://dx.doi.org/10.1063/1.3442416
16.
16.S. F. Swallen, K. L. Kearns, M. K. Mapes, Y. S. Kim, R. J. McMahon, M. D. Ediger, T. Wu, L. Yu, and S. Satija, Science 315(80), 353 (2007).
http://dx.doi.org/10.1126/science.1135795
17.
17.S. F. Swallen, K. Traynor, R. J. McMahon, M. D. Ediger, and T. E. Mates, Phys. Rev. Lett. 102, 065503 (2009).
http://dx.doi.org/10.1103/physrevlett.102.065503
18.
18.S. F. Swallen, K. Windsor, R. J. McMahon, M. D. Ediger, and T. E. Mates, J. Phys. Chem. B 114, 2635 (2010).
http://dx.doi.org/10.1021/jp9107359
19.
19.T. Pérez-Castañeda, C. Rodríguez-Tinoco, J. Rodríguez-Viejo, and M. A. Ramos, Proc. Natl. Acad. Sci. U. S. A. 111, 11275 (2014).
http://dx.doi.org/10.1073/pnas.1405545111
20.
20.M. D. Ediger, Proc. Natl. Acad. Sci. U. S. A. 111, 11232 (2014).
http://dx.doi.org/10.1073/pnas.1411278111
21.
21.B. C. Hancock and G. Zografi, J. Pharm. Sci. 86, 1 (1997).
http://dx.doi.org/10.1021/js9601896
22.
22.K. L. Kearns, H.-Y. Na, R. D. Froese, S. Mukhopadhyay, H. Woodward, D. Welsh, T. De Vries, D. Devore, P. Trefonas, and L. Hong, in SPIE Organic Photonics + Electronics, edited by F. So and C. Adachi (International Society for Optics and Photonics, 2014), p. 91830F.
23.
23.C. W. Brian, L. Zhu, and L. Yu, J. Chem. Phys. 140, 054509 (2014).
http://dx.doi.org/10.1063/1.4863556
24.
24.J. Zhao, S. L. Simon, and G. B. McKenna, Nat. Commun. 4, 1783 (2013).
http://dx.doi.org/10.1038/ncomms2809
25.
25.T. Pérez-Castañeda, R. J. Jiménez-Riobóo, and M. A. Ramos, Phys. Rev. Lett. 112, 165901 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.165901
26.
26.L. Zhu, C. W. Brian, S. F. Swallen, P. T. Straus, M. D. Ediger, and L. Yu, Phys. Rev. Lett. 106, 256103 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.256103
27.
27.Y. Z. Chua, M. Ahrenberg, M. Tylinski, M. D. Ediger, and C. Schick, J. Chem. Phys. 142, 054506 (2015).
http://dx.doi.org/10.1063/1.4906806
28.
28.C. R. Daley, Z. Fakhraai, M. D. Ediger, and J. A. Forrest, Soft Matter 8, 2206 (2012).
http://dx.doi.org/10.1039/c2sm06826e
29.
29.Z. Fakhraai, T. Still, G. Fytas, and M. D. Ediger, J. Phys. Chem. Lett. 2, 423 (2011).
http://dx.doi.org/10.1021/jz101723d
30.
30.M. Ahrenberg, Y. Z. Chua, K. R. Whitaker, H. Huth, M. D. Ediger, and C. Schick, J. Chem. Phys. 138, 024501 (2013).
http://dx.doi.org/10.1063/1.4773354
31.
31.D. P. B. Aji, A. Hirata, F. Zhu, L. Pan, K. M. Reddy, S. Song, Y. Liu, T. Fujita, S. Kohara, and M. Chen, preprint arXiv:1306.1575 (2013).
32.
32.H.-B. Yu, Y. Luo, and K. Samwer, Adv. Mater. 25, 5904 (2013).
http://dx.doi.org/10.1002/adma.201302700
33.
33.Y. Guo, A. Morozov, D. Schneider, J. W. Chung, C. Zhang, M. Waldmann, N. Yao, G. Fytas, C. B. Arnold, and R. D. Priestley, Nat. Mater. 11, 337 (2012).
http://dx.doi.org/10.1038/nmat3234
34.
34.K. Dawson, L. A. Kopff, L. Zhu, R. J. McMahon, L. Yu, R. Richert, and M. D. Ediger, J. Chem. Phys. 136, 094505 (2012).
http://dx.doi.org/10.1063/1.3686801
35.
35.K. Dawson, L. Zhu, L. A. Kopff, R. J. McMahon, L. Yu, and M. D. Ediger, J. Phys. Chem. Lett. 2, 2683 (2011).
http://dx.doi.org/10.1021/jz201174m
36.
36.K. R. Whitaker, D. J. Scifo, M. D. Ediger, M. Ahrenberg, and C. Schick, J. Phys. Chem. B 117, 12724 (2013).
http://dx.doi.org/10.1021/jp400960g
37.
37.I. Lyubimov, M. D. Ediger, and J. J. de Pablo, J. Chem. Phys. 139, 144505 (2013).
http://dx.doi.org/10.1063/1.4823769
38.
38.S. Singh and J. J. de Pablo, J. Chem. Phys. 134, 194903 (2011).
http://dx.doi.org/10.1063/1.3586805
39.
39.A. Sepúlveda, M. Tylinski, A. Guiseppi-Elie, R. Richert, and M. D. Ediger, Phys. Rev. Lett. 113, 045901 (2014).
http://dx.doi.org/10.1103/physrevlett.113.045901
40.
40.A. Sepúlveda, S. F. Swallen, L. A. Kopff, R. J. McMahon, and M. D. Ediger, J. Chem. Phys. 137, 204508 (2012).
http://dx.doi.org/10.1063/1.4768168
41.
41.T. Liu, K. Cheng, E. Salami, F. Gao, E. Glor, M. Li, P. Walsh, and Z. Fakhraai, “Synthesis and high-throughput characterization of structural analogues of molecular glassformers: 1,3,5-trisarylbenzenesm,” Soft Matter (to be published).
http://dx.doi.org/10.1039/C5SM01044F
42.
42.K. R. Whitaker, M. Ahrenberg, C. Schick, and M. D. Ediger, J. Chem. Phys. 137, 154502 (2012).
http://dx.doi.org/10.1063/1.4758807
43.
43.Z. Chen, A. Sepúlveda, M. D. Ediger, and R. Richert, Eur. Phys. J. B 85, 268 (2012).
http://dx.doi.org/10.1140/epjb/e2012-30363-0
44.
44.D. Yokoyama, A. Sakaguchi, M. Suzuki, and C. Adachi, Appl. Phys. Lett. 93, 3 (2008).
http://dx.doi.org/10.1063/1.2996258
45.
45.D. Yokoyama and C. Adachi, J. Appl. Phys. 107, 7 (2010).
http://dx.doi.org/10.1063/1.3432568
46.
46.J. L. Keddie, R. A. L. Jones, and R. A. Cory, Faraday Discuss. 98, 219 (1994).
http://dx.doi.org/10.1039/fd9949800219
47.
47.E. C. Glor and Z. Fakhraai, J. Chem. Phys. 141, 194505 (2014).
http://dx.doi.org/10.1063/1.4901512
48.
48.S. Kim, S. A. Hewlett, C. B. Roth, and J. M. Torkelson, Eur. Phys. J. E: Soft Matter Biol. Phys. 30, 83 (2009).
http://dx.doi.org/10.1140/epje/i2009-10510-y
49.
49.D. Yokoyama, Y. Setoguchi, A. Sakaguchi, M. Suzuki, and C. Adachi, Adv. Funct. Mater. 20, 386 (2010).
http://dx.doi.org/10.1002/adfm.200901684
50.
50.D. Yokoyama, Z. Qiang wang, Y.-J. Pu, K. Kobayashi, J. Kido, and Z. Hong, Sol. Energy Mater. Sol. Cells 98, 472 (2012).
http://dx.doi.org/10.1016/j.solmat.2011.10.014
51.
51.M. Oh-e, H. Ogata, Y. Fujita, and M. Koden, Appl. Phys. Lett. 102, 101905 (2013).
http://dx.doi.org/10.1063/1.4792746
52.
52.P. Badrinarayanan, W. Zheng, Q. Li, and S. L. Simon, J. Non-Cryst. Solids 353, 2603 (2007).
http://dx.doi.org/10.1016/j.jnoncrysol.2007.04.025
53.
53.See supplementary material at http://dx.doi.org/10.1063/1.4928521 for details on custom chamber, temperature calibration, deposition temperature, raw ellipsometry data, and temperature ramps of β-AA and α,α,α,α-TNBP.[Supplementary Material]
54.
54.D. Yokoyama, A. Sakaguchi, M. Suzuki, and C. Adachi, Org. Electron. 10, 127 (2009).
http://dx.doi.org/10.1016/j.orgel.2008.10.010
55.
55.G. Beaucage, R. Composto, and R. S. Stein, J. Polym. Sci., Part B: Polym. Phys. 31, 319 (1993).
http://dx.doi.org/10.1002/polb.1993.090310310
56.
56.J. E. Pye and C. B. Roth, Macromolecules 46, 9455 (2013).
http://dx.doi.org/10.1021/ma401872u
57.
57.K. J. Dawson, L. Zhu, L. Yu, and M. D. Ediger, J. Phys. Chem. B 115, 455 (2011).
http://dx.doi.org/10.1021/jp1092916
58.
58.S. S. Dalal and M. D. Ediger, J. Phys. Chem. B 119, 3875 (2015).
http://dx.doi.org/10.1021/jp512905a
59.
59.N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart, and Winston, New York, 1976).
60.
60.J. H. Magill and A. R. Ubbelohde, Trans. Faraday Soc. 54, 1811 (1958).
http://dx.doi.org/10.1039/tf9585401811
61.
61.C. M. Whitaker and R. J. McMahon, J. Phys. Chem. 100, 1081 (1996).
http://dx.doi.org/10.1021/jp9529329
62.
62.C. M. Whitaker and R. J. McMahon, Magill in 1958 misidentified ααβ-TNB as ααα-TNB.
63.
63.Z. Chen and R. Richert, J. Chem. Phys. 135, 124515 (2011).
http://dx.doi.org/10.1063/1.3643332
64.
64.H. Nakayama, K. Omori, K. Ino-u-e, and K. Ishii, J. Phys. Chem. B 117, 10311 (2013).
http://dx.doi.org/10.1021/jp404256r
65.
65.C. W. Brian and L. Yu, J. Phys. Chem. A 117, 13303 (2013).
http://dx.doi.org/10.1021/jp404944s
66.
66.A. Shavit and R. A. Riggleman, Macromolecules 46, 5044 (2013).
http://dx.doi.org/10.1021/ma400210w
67.
67.L. Liu, G. Yang, Y. Duan, Y. Geng, Y. Wu, and Z. Su, Org. Electron. 15, 1896 (2014).
http://dx.doi.org/10.1016/j.orgel.2014.05.020
68.
68.L. Wang, P. Li, B. Xu, H. Zhang, and W. Tian, Org. Electron. 15, 2476 (2014).
http://dx.doi.org/10.1016/j.orgel.2014.07.003
69.
69.A. M. Crotty, A. N. Gizzi, H. J. Rivera-Jacquez, A. E. Masunov, Z. Hu, J. A. Geldmeier, and A. J. Gesquiere, J. Phys. Chem. C 118, 19975 (2014).
http://dx.doi.org/10.1021/jp5040932
70.
70.D. Skomski, J. Jo, C. D. Tempas, S. Kim, D. Lee, and S. L. Tait, Langmuir 30, 10050 (2014).
http://dx.doi.org/10.1021/la502288v
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/8/10.1063/1.4928521
Loading
/content/aip/journal/jcp/143/8/10.1063/1.4928521
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/8/10.1063/1.4928521
2015-08-26
2016-12-04

Abstract

We detail the formation and properties associated with stable glasses (SG) formed by a series of structural analogues of 1,3-bis(1-naphthyl)-5-(2-naphthyl)benzene (α,α,β-TNB), a well-studied SG former. Five compounds with similar structural properties were synthesized and physical vapor-deposited with a constant deposition rate at various substrate temperatures (T) in the range between 0.73 T and 0.96 T. These molecules include α,α,β-TNB, 3,5-di(naphthalen-1-yl)-1-phenylbenzene (α,α-P), 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene (α,α-A), 9,9′-(5-(naphthalen-2-yl)-1,3-phenylene)dianthracene (β-AA), and 3,3′,5,5′-tetra(naphthalen-1-yl)-1,1′-biphenyl (α,α,α,α-TNBP). Ellipsometry was used to study the transformations from the as-deposited glasses into ordinary glasses (OG). The stability of each film was evaluated by measuring the fictive temperature (T) and density difference between the as-deposited glass and OG. It is demonstrated that all five molecules can form SGs upon vapor deposition in this temperature range. In-depth studies on the dependence of the stability of as-deposited glasses upon T were performed with three molecules, α,α,β-TNB, α,α-P, and α,α-A. The general trends of stability were comparable at the same T/T for these three compounds. Similar to previous studies on α,α,β-TNB, vapor-deposited glasses of α,α-P and α,α-A formed the most stable structures around T = 0.8-0.85 T. The most stable glass of each molecule showed the lowest thermal expansion coefficient compared to OG and a positive optical birefringence. However, the SGs of α,α-A were less stable compared to α,α-P and α,α,β-TNB at the relative T/T. Based on Arrhenius extrapolation of the aging time, as a measure of stability, the most stable α,α-A glass was only aged for a few years as opposed to hundreds or thousands of years for other glasses. We hypothesize that the reduced stability is due to slower mobility at the free surface of α,α-A glass compared to the other two molecules.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/8/1.4928521.html;jsessionid=yFgEvIpFmClLl-Ya8pS6WSry.x-aip-live-06?itemId=/content/aip/journal/jcp/143/8/10.1063/1.4928521&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/8/10.1063/1.4928521&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/8/10.1063/1.4928521'
Right1,Right2,Right3,