Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/8/10.1063/1.4928694
1.
1.W. J. Lafferty, R. D. Suenram, and F. J. Lovas, “Microwave-spectra of the HF2, DF2, HF-DF, and DF-HF hydrogen-bonded complexes,” J. Mol. Spectrosc. 123, 434452 (1987).
http://dx.doi.org/10.1016/0022-2852(87)90290-6
2.
2.K. Nauta and R. E. Miller, “The hydrogen fluoride dimer in liquid helium: A prototype system for studying solvent effects on hydrogen bonding,” J. Chem. Phys. 113, 1015810168 (2000).
http://dx.doi.org/10.1063/1.1289824
3.
3.M. D. Schuder, C. M. Lovejoy, R. Lascola, and D. J. Nesbitt, “High-resolution, jet-cooled infrared-spectroscopy of (HCl)2–Analysis of ν1 and ν2 HCl stretching fundamentals, interconversion tunneling, and mode-specific predissociation lifetimes,” J. Chem. Phys. 99, 43464362 (1993).
http://dx.doi.org/10.1063/1.466089
4.
4.D. Skvortsov, R. Sliter, M. Y. Choi, and A. F. Vilesov, “Interchange-tunneling splitting in HCl dimer in helium nanodroplets,” J. Chem. Phys. 128, 094308-1094308-5 (2008).
http://dx.doi.org/10.1063/1.2834925
5.
5.R. S. Fellers, C. Leforestier, L. B. Braly, M. G. Brown, and R. J. Saykally, “Spectroscopic determination the water pair potential,” Science 284, 945948 (1999).
http://dx.doi.org/10.1126/science.284.5416.945
6.
6.Z. S. Huang and R. E. Miller, “High-resolution near-infrared spectroscopy of water dimers,” J. Chem. Phys. 91, 66136631 (1989).
http://dx.doi.org/10.1063/1.457380
7.
7.K. Kuyanov-Prozument, M. Y. Choi, and A. F. Vilesov, “Spectrum and infrared intensities of OH-stretching bands of water dimers,” J. Chem. Phys. 132, 014304-1014304-7 (2010).
http://dx.doi.org/10.1063/1.3276459
8.
8.W. L. Barnes, J. Susskind, R. H. Hunt, and E. K. Plyler, “Measurement and analysis of the ν3 band of methane,” J. Chem. Phys. 56, 51605172 (1972).
http://dx.doi.org/10.1063/1.1677002
9.
9.J. W. I. van Bladel and A. van der Avoird, “The infrared photodissociation spectra and the internal mobility of SF6, SiF4, and SiH4 dimers,” J. Chem. Phys. 92, 28372847 (1990).
http://dx.doi.org/10.1063/1.457930
10.
10.C. Chapados and A. Cabana, “Infrared-spectra and structures of solid CH4 and CD4 in phases I and II,” Can. J. Chem. 50, 35213533 (1972).
http://dx.doi.org/10.1139/v72-566
11.
11.T. Yamamoto, Y. Kataoka, and K. Okada, “Theory of phase-transitions in solid methanes. 10. Centering around phase-II in solid CH4,” J. Chem. Phys. 66, 27012730 (1977).
http://dx.doi.org/10.1063/1.434218
12.
12.K. Kobashi, K. Okada, and T. Yamamoto, “Theory of phase transitions in solid methanes. XI. Infrared and Raman spectra of the ν3 and ν4 modes in phase II of solid CH4,” J. Chem. Phys. 66, 55685577 (1977).
http://dx.doi.org/10.1063/1.433879
13.
13.R. L. Rowley and T. Pakkanen, “Determination of a methane intermolecular potential model for use in molecular simulations from ab initio calculations,” J. Chem. Phys. 110, 33683377 (1999).
http://dx.doi.org/10.1063/1.478203
14.
14.W. L. Jorgensen, D. S. Maxwell, and J. TiradoRives, “Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids,” J. Am. Chem. Soc. 118, 1122511236 (1996).
http://dx.doi.org/10.1021/ja9621760
15.
15.J. B. L. Martins, J. R. S. Politi, E. Garcia, A. F. A. Vilela, and R. Gargano, “Theoretical study of CH4-CH4, CHF3-CH4, CH4-H2 O, and CHF3-H2O dimers,” J. Phys. Chem. A 113, 1481814823 (2009).
http://dx.doi.org/10.1021/jp904962b
16.
16.A. J. Stone, The Theory of Intermolecular Forces (Oxford University Press, New York, 1996).
17.
17.S. Tsuzuki, T. Uchimaru, and K. Tanabe, “A new ab initio based model potential for methane,” Chem. Phys. Lett. 287, 327332 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00193-6
18.
18.M. Hartmann, R. E. Miller, J. P. Toennies, and A. Vilesov, “Rotationally resolved spectroscopy of SF6 in liquid-helium clusters–A molecular probe of cluster temperature,” Phys. Rev. Lett. 75, 15661569 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.1566
19.
19.J. P. Toennies and A. F. Vilesov, “Superfluid helium droplets: A uniquely cold nanomatrix for molecules and molecular complexes,” Angew. Chem., Int. Ed. 43, 26222648 (2004).
http://dx.doi.org/10.1002/anie.200300611
20.
20.M. Y. Choi, G. E. Douberly, T. M. Falconer, W. K. Lewis, C. M. Lindsay, J. M. Merritt, P. L. Stiles, and R. E. Miller, “Infrared spectroscopy of helium nanodroplets: Novel methods for physics and chemistry,” Int. Rev. Phys. Chem. 25, 1575 (2006).
http://dx.doi.org/10.1080/01442350600625092
21.
21.S. Grebenev, M. Hartmann, M. Havenith, B. Sartakov, J. P. Toennies, and A. F. Vilesov, “The rotational spectrum of single OCS molecules in liquid 4He droplets,” J. Chem. Phys. 112, 44854495 (2000).
http://dx.doi.org/10.1063/1.481011
22.
22.C. M. Lindsay, G. E. Douberly, and R. E. Miller, “Rotational and vibrational dynamics of H2O and HDO in helium nanodroplets,” J. Mol. Struct. 786, 96104 (2006).
http://dx.doi.org/10.1016/j.molstruc.2005.09.025
23.
23.K. E. Kuyanov, M. N. Slipchenko, and A. F. Vilesov, “Spectra of the ν1 and ν3 bands of water molecules in helium droplets,” Chem. Phys. Lett. 427, 59 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.05.134
24.
24.M. N. Slipchenko and A. F. Vilesov, “Spectra of NH3 in He droplets in the 3 μm range,” Chem. Phys. Lett. 412, 176183 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.06.100
25.
25.H. Hoshina, D. Skvortsov, B. G. Sartakov, and A. F. Vilesov, “Rotation of methane and silane molecules in He droplets,” J. Chem. Phys. 132, 074302-1074302-8 (2010).
http://dx.doi.org/10.1063/1.3313925
26.
26.D. Skvortsov, D. Marinov, B. G. Sartakov, and A. F. Vilesov, “Large enhancement of the vibration-rotation coupling of the ν1 and ν3 states of silane in helium droplets,” J. Chem. Phys. 131, 241103-1241103-4 (2009).
http://dx.doi.org/10.1063/1.3282446
27.
27.L. F. Gomez, E. Loginov, R. Sliter, and A. F. Vilesov, “Sizes of large helium droplets,” J. Chem. Phys. 135, 154201-1154201-9 (2011).
http://dx.doi.org/10.1063/1.3650235
28.
28.M. Hartmann, R. E. Miller, J. P. Toennies, and A. F. Vilesov, “High-resolution molecular spectroscopy of van der Waals clusters in liquid helium droplets,” Science 272, 16311634 (1996).
http://dx.doi.org/10.1126/science.272.5268.1631
29.
29.E. Loginov, L. F. Gomez, and A. F. Vilesov, “Formation of core-shell silver-ethane clusters in He droplets,” J. Phys. Chem. A 117, 117411782 (2013).
http://dx.doi.org/10.1021/jp402614s
30.
30.K. Nauta and R. E. Miller, “Rotational and vibrational dynamics of methane in helium nanodroplets,” Chem. Phys. Lett. 350, 225232 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)01294-5
31.
31.M. Slipchenko, K. Kuyanov, B. Sartakov, and A. F. Vilesov, “Infrared intensity in small ammonia and water clusters,” J. Chem. Phys. 124, 241101-1241101-4 (2006).
http://dx.doi.org/10.1063/1.2216712
32.
32.H. Yasuda, “The intermolecular potential and the crystalline field of solid CH4. II,” J. Chem. Phys. 73, 37223728 (1980).
http://dx.doi.org/10.1063/1.440601
33.
33.H. Yasuda and T. Yamamoto, “On the 2-center expansion of an arbitrary function,” Prog. Theor. Phys. 45, 14581465 (1971).
http://dx.doi.org/10.1143/PTP.45.1458
34.
34.F. H. Frayer and G. E. Ewing, “Nuclear spin conversion and vibration-rotation spectra of methane in solid argon,” J. Chem. Phys. 48, 781792 (1968).
http://dx.doi.org/10.1063/1.1668712
35.
35.M. Hepp, G. Winnewisser, and K. M. T. Yamada, “Symmetry selective cooling in the supersonic jet expansion of methane,” J. Mol. Spectrosc. 146, 181187 (1991).
http://dx.doi.org/10.1016/0022-2852(91)90381-J
36.
36.M. Miki and T. Momose, “Rovibrational transitions and nuclear spin conversion of methane in parahydrogen crystals,” Low Temp. Phys. 26, 661668 (2000).
http://dx.doi.org/10.1063/1.1312392
37.
37.G. Herzberg, Molecular Spectra and Molecular Structure, II Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, New Jersey, London, 1968).
38.
38.J. E. Lolck, A. G. Robiette, L. R. Brown, and R. H. Hunt, “Molecular-constants for the interacting upper states of the ν1, ν3, 2ν2, ν2 + ν4, and 2ν4 bands in 12CH4,” J. Mol. Spectrosc. 92, 229245 (1982).
http://dx.doi.org/10.1016/0022-2852(82)90096-0
39.
39.A. S. Davydov, Theory of Molecular Excitons (McGraw-Hill Book Company, Inc., New York, 1962).
40.
40.M. Snels and R. Fantoni, “IR dissociation of dimers of high symmetry molecules - SF6, SiF4 and SiH4,” Chem. Phys. 109, 6783 (1986).
http://dx.doi.org/10.1016/0301-0104(86)80185-9
41.
41.M. Snels and J. Reuss, “Induction effects on IR-predissociation spectra of (SF6)2, (SiF4)2 and (SiH4)2,” Chem. Phys. Lett. 140, 543547 (1987).
http://dx.doi.org/10.1016/0009-2614(87)80483-9
42.
42.R. D. Urban, L. G. Jorissen, Y. Matsumoto, and M. Takami, “Free jet infrared-spectroscopy of SiF4-rare gas complexes,” J. Chem. Phys. 103, 39603965 (1995).
http://dx.doi.org/10.1063/1.469583
43.
43.R. D. Urban and M. Takami, “Free jet infrared-spectroscopy of (28SiF4)2 in the 10-μm region,” J. Chem. Phys. 102, 30173023 (1995).
http://dx.doi.org/10.1063/1.468611
44.
44.K. Fox and W. B. Person, “Transition moments in infrared-active fundamentals of spherical-top molecules,” J. Chem. Phys. 64, 52185221 (1976).
http://dx.doi.org/10.1063/1.432196
45.
45.J. P. Toennies and A. F. Vilesov, “Spectroscopy of atoms and molecules in liquid helium,” Annu. Rev. Phys. Chem. 49, 141 (1998).
http://dx.doi.org/10.1146/annurev.physchem.49.1.1
46.
46.K. T. Hecht, “Vibration-rotation energies of tetrahedral XY4 molecules. 2. The fundamental ν3 of CH4,” J. Mol. Spectrosc. 5, 390404 (1960).
http://dx.doi.org/10.1016/0022-2852(61)90103-5
47.
47.B. Asmussen, W. Press, M. Prager, and H. Blank, “Rotational excitations in CH4/krypton mixtures,” J. Chem. Phys. 98, 158163 (1993).
http://dx.doi.org/10.1063/1.464666
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/8/10.1063/1.4928694
Loading
/content/aip/journal/jcp/143/8/10.1063/1.4928694
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/8/10.1063/1.4928694
2015-08-25
2016-10-01

Abstract

This work reports on the study of the internal rotation of methane molecules in small clusters containing up to about five molecules. The clusters were assembled in helium droplets at T = 0.38 K by successive capture of single methane molecules and studied by infrared laser spectroscopy of the fundamental CH ν vibration around 3030 cm−1. The spectra demonstrate well resolved structure due to internal rotation of the constituent molecules in the clusters. The most resolved spectrum for the dimers shows characteristic splitting of the lines due to anisotropic intermolecular interaction. The magnitude of the splitting is found to be in a good quantitative agreement with the recent theoretical anisotropic intermolecular potentials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/8/1.4928694.html;jsessionid=JIuX2C_tVyTbn6ihPv9z3FIT.x-aip-live-03?itemId=/content/aip/journal/jcp/143/8/10.1063/1.4928694&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/8/10.1063/1.4928694&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/8/10.1063/1.4928694'
Right1,Right2,Right3,