Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/9/10.1063/1.4928523
1.
1.C. A. Angell, Science 267, 1924 (1995).
http://dx.doi.org/10.1126/science.267.5206.1924
2.
2.P. G. Debenedetti and F. H. Stillinger, Nature 410, 259 (2001).
http://dx.doi.org/10.1038/35065704
3.
3.S. F. Swallen, K. L. Kearns, M. K. Mapes, Y. S. Kim, R. J. McMahon, M. D. Ediger, T. Wu, L. Yu, and S. Satija, Science 315, 353 (2007).
http://dx.doi.org/10.1126/science.1135795
4.
4.K. Ishii, H. Nakayama, S. Hirabayashi, and R. Moriyama, Chem. Phys. Lett. 459, 109 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.05.050
5.
5.K. L. Kearns, S. F. Swallen, M. D. Ediger, T. Wu, Y. Sun, and L. Yu, J. Phys. Chem. B 112, 4934 (2008).
http://dx.doi.org/10.1021/jp7113384
6.
6.S. F. Swallen, K. Traynor, R. J. McMahon, M. D. Ediger, and T. E. Mates, Phys. Rev. Lett. 102, 065503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.065503
7.
7.S. Leonard and P. Harrowell, J. Chem. Phys. 133, 244502 (2010).
http://dx.doi.org/10.1063/1.3511721
8.
8.K. L. Kearns, T. Still, G. Fytas, and M. D. Ediger, Adv. Mater. 22, 39 (2010).
http://dx.doi.org/10.1002/adma.200901673
9.
9.S. F. Swallen, K. Windsor, R. J. McMahon, M. D. Ediger, and T. E. Mates, J. Phys. Chem. B 114, 2635 (2010).
http://dx.doi.org/10.1021/jp9107359
10.
10.S. L. L. M. Ramos, M. Oguni, K. Ishii, and H. Nakayama, J. Phys. Chem. B 115, 14327 (2011).
http://dx.doi.org/10.1021/jp203612s
11.
11.A. Sepulveda, S. F. Swallen, L. A. Kopff, R. J. McMahon, and M. D. Ediger, J. Chem. Phys. 137, 204508 (2012).
http://dx.doi.org/10.1063/1.4768168
12.
12.K. R. Whitaker, D. J. Scifo, M. D. Ediger, M. Ahrenberg, and C. Schick, J. Phys. Chem. B 117, 12724 (2013).
http://dx.doi.org/10.1021/jp400960g
13.
13.H.-B. Yu, Y. Luo, and K. Samwer, Adv. Mater. 25, 5904 (2013).
http://dx.doi.org/10.1002/adma.201302700
14.
14.D. P. B. Aji, A. Hirata, F. Zhu, L. Pan, K. Madhav Reddy, S. Song, Y. Liu, T. Fujita, S. Kohara, and M. Chen, e-print arXiv:1306.1575 [cond-mat.mtrl-sci] (2013).
15.
15.S. Singh, M. D. Ediger, and J. J. de Pablo, Nat. Mater. 12, 139 (2013).
http://dx.doi.org/10.1038/nmat3521
16.
16.I. Lyubimov, M. D. Ediger, and J. J. de Pablo, J. Chem. Phys. 139, 144505 (2013).
http://dx.doi.org/10.1063/1.4823769
17.
17.P.-H. Lin, I. Lyubimov, L. Yu, M. D. Ediger, and J. J. de Pablo, J. Chem. Phys. 140, 204504 (2014).
http://dx.doi.org/10.1063/1.4876078
18.
18.D. Bhattacharya and V. Sadtchenko, J. Chem. Phys. 141, 094502 (2014).
http://dx.doi.org/10.1063/1.4893716
19.
19.S. L. L. M. Ramos, A. K. Chigira, and M. Oguni, J. Phys. Chem. B 119, 4076 (2015).
http://dx.doi.org/10.1021/jp5109174
20.
20.C. Rodríguez-Tinoco, M. Gonzalez-Silveira, J. Ràfols-Ribé, A. F. Lopeandía, M. T. Clavaguera-Mora, and J. Rodríguez-Viejo, J. Phys. Chem. B 118, 10795 (2014).
http://dx.doi.org/10.1021/jp506782d
21.
21.A. Wisitsorasak and P. G. Wolynes, Phys. Rev. E 88, 022308 (2013).
http://dx.doi.org/10.1103/PhysRevE.88.022308
22.
22.S. S. Dalal, A. Sepúlveda, G. K. Pribil, Z. Fakhraai, and M. D. Ediger, J. Chem. Phys. 136, 204501 (2012).
http://dx.doi.org/10.1063/1.4719532
23.
23.E. A. A. Pogna, C. Rodríguez-Tinoco, G. Cerullo, C. Ferrante, J. Rodríguez-Viejo, and T. Scopigno, Proc. Natl. Acad. Sci. U. S. A. 112, 2331 (2015).
http://dx.doi.org/10.1073/pnas.1423435112
24.
24.N. Bakken, J. M. Torres, J. Li, and B. D. Vogt, Soft Matter 7, 7269 (2011).
http://dx.doi.org/10.1039/c1sm05732d
25.
25.T. Pérez-Castañeda, C. Rodríguez-Tinoco, J. Rodríguez-Viejo, and M. A. Ramos, Proc. Natl. Acad. Sci. U. S. A. 111, 11275 (2014).
http://dx.doi.org/10.1073/pnas.1405545111
26.
26.L. Zhu and L. Yu, Chem. Phys. Lett. 499, 62 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.09.010
27.
27.E. León-Gutierrez, G. Garcia, M. Clavaguera-Mora, and J. Rodríguez-Viejo, Thermochim. Acta 492, 51 (2009).
http://dx.doi.org/10.1016/j.tca.2009.05.016
28.
28.Z. Chen and R. Richert, J. Chem. Phys. 135, 124515 (2011).
http://dx.doi.org/10.1063/1.3643332
29.
29.K. Ishii, H. Nakayama, R. Moriyama, and Y. Yokoyama, Bull. Chem. Soc. Jpn. 82, 1240 (2009).
http://dx.doi.org/10.1246/bcsj.82.1240
30.
30.K. Dawson, L. Zhu, L. A. Kopff, R. J. McMahon, L. Yu, and M. D. Ediger, J. Phys. Chem. Lett. 2, 2683 (2011).
http://dx.doi.org/10.1021/jz201174m
31.
31.S. S. Dalal, D. M. Walters, I. Lyubimov, J. J. de Pablo, and M. D. Ediger, Proc. Natl. Acad. Sci. U. S. A. 112, 4227 (2015).
http://dx.doi.org/10.1073/pnas.1421042112
32.
32.K. L. Kearns, H.-Y. Na, R. D. Froese, S. Mukhopadhyay, H. Woodward, D. Welsh, T. De Vries, D. Devore, P. Trefonas, and L. Hong, Proc. SPIE 9183, 91830F (2014).
http://dx.doi.org/10.1117/12.2062991
33.
33.S. Singh and J. J. de Pablo, J. Chem. Phys. 134, 194903 (2011).
http://dx.doi.org/10.1063/1.3586805
34.
34.Z. Shi, P. G. Debenedetti, and F. H. Stillinger, J. Chem. Phys. 134, 114524 (2011).
http://dx.doi.org/10.1063/1.3565480
35.
35.J. A. Torres, P. F. Nealey, and J. J. de Pablo, Phys. Rev. Lett. 85, 3221 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3221
36.
36.Z. Yang, Y. Fujii, F. K. Lee, C.-H. Lam, and O. K. C. Tsui, Science 328, 1676 (2010).
http://dx.doi.org/10.1126/science.1184394
37.
37.D. Qi, M. Ilton, and J. Forrest, Eur. Phys. J. E 34, 1 (2011).
http://dx.doi.org/10.1140/epje/i2011-11056-1
38.
38.M. D. Ediger and J. A. Forrest, Macromolecules 47, 471 (2014).
http://dx.doi.org/10.1021/ma4017696
39.
39.L. Zhu, C. Brian, S. Swallen, P. Straus, M. Ediger, and L. Yu, Phys. Rev. Lett. 106, 256103 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.256103
40.
40.R. Malshe, M. D. Ediger, L. Yu, and J. J. de Pablo, J. Chem. Phys. 134, 194704 (2011).
http://dx.doi.org/10.1063/1.3573903
41.
41.C. W. Brian and L. Yu, J. Phys. Chem. A 117, 13303 (2013).
http://dx.doi.org/10.1021/jp404944s
42.
42.W. Zhang, C. Brian, and L. Yu, J. Phys. Chem. B 119, 5071 (2015).
43.
43.J. D. Stevenson and P. G. Wolynes, J. Chem. Phys. 129, 234514 (2008).
http://dx.doi.org/10.1063/1.3041651
44.
44.S. Capaccioli, K. L. Ngai, M. Paluch, and D. Prevosto, Phys. Rev. E 86, 051503 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.051503
45.
45.K. J. Dawson, K. L. Kearns, L. Yu, W. Steffen, and M. D. Ediger, Proc. Natl. Acad. Sci. U. S. A. 106, 15165 (2009).
http://dx.doi.org/10.1073/pnas.0901469106
46.
46.K. J. Dawson, L. Zhu, L. Yu, and M. D. Ediger, J. Phys. Chem. B 115, 455 (2011).
http://dx.doi.org/10.1021/jp1092916
47.
47.K. Dawson, L. A. Kopff, L. Zhu, R. J. McMahon, L. Yu, R. Richert, and M. D. Ediger, J. Chem. Phys. 136, 094505 (2012).
http://dx.doi.org/10.1063/1.3686801
48.
48.A. Gujral, K. A. O’Hara, M. F. Toney, M. L. Chabinyc, and M. Ediger, Chem. Mater. 27, 3341 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b00583
49.
49.S. S. Dalal and M. D. Ediger, J. Phys. Chem. Lett. 3, 1229 (2012).
http://dx.doi.org/10.1021/jz3003266
50.
50.D. Yokoyama, A. Sakaguchi, M. Suzuki, and C. Adachi, Org. Electron. 10, 127 (2009).
http://dx.doi.org/10.1016/j.orgel.2008.10.010
51.
51.D. Yokoyama, Y. Setoguchi, A. Sakaguchi, M. Suzuki, and C. Adachi, Adv. Funct. Mater. 20, 386 (2010).
http://dx.doi.org/10.1002/adfm.200901684
52.
52.D. Yokoyama, J. Mater. Chem. 21, 19187 (2011).
http://dx.doi.org/10.1039/c1jm13417e
53.
53.M. Oh-e, H. Ogata, Y. Fujita, and M. Koden, Appl. Phys. Lett. 102, 101905 (2013).
http://dx.doi.org/10.1063/1.4792746
54.
54.C. Mayr, M. Taneda, C. Adachi, and W. Brütting, Org. Electron. 15, 3031 (2014).
http://dx.doi.org/10.1016/j.orgel.2014.07.042
55.
55.Y. Shirota, J. Mater. Chem. 15, 75 (2005).
http://dx.doi.org/10.1039/b413819h
56.
56.C. Mayr and W. Brütting, Chem. Mater. 27, 2759 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b00062
57.
57.T. Komino, H. Tanaka, and C. Adachi, Chem. Mater. 26, 3665 (2014).
http://dx.doi.org/10.1021/cm500802p
58.
58.A. Haji-Akbari and P. G. Debenedetti, J. Chem. Phys. 141, 024506 (2014).
http://dx.doi.org/10.1063/1.4885365
59.
59.S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
60.
60.W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).
http://dx.doi.org/10.1021/ja9621760
61.
61.G. A. Kaminski, R. A. Friesner, J. Tirado-Rives, and W. L. Jorgensen, J. Phys. Chem. B 105, 6474 (2001).
http://dx.doi.org/10.1021/jp003919d
62.
62.U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995).
http://dx.doi.org/10.1063/1.470117
63.
63.B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).
http://dx.doi.org/10.1021/ct700301q
64.
64.S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl, Bioinformatics 29, 845 (2013).
http://dx.doi.org/10.1093/bioinformatics/btt055
65.
65.G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007).
http://dx.doi.org/10.1063/1.2408420
66.
66.F. Starr, S. Sastry, J. Douglas, and S. Glotzer, Phys. Rev. Lett. 89, 125501 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.125501
67.
67.D. Yokoyama and C. Adachi, J. Appl. Phys. 107, 123512 (2010).
http://dx.doi.org/10.1063/1.3432568
68.
68.D. Yokoyama, K.-i. Nakayama, T. Otani, and J. Kido, Adv. Mater. 24, 6368 (2012).
http://dx.doi.org/10.1002/adma.201202422
69.
69.R. M. Lynden-Bell, J. Kohanoff, and M. G. Del Popolo, Faraday Discuss. 129, 57 (2005).
http://dx.doi.org/10.1039/b405514d
70.
70.T. Yan, S. Li, W. Jiang, X. Gao, B. Xiang, and G. A. Voth, J. Phys. Chem. B 110, 1800 (2006).
http://dx.doi.org/10.1021/jp055890p
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/9/10.1063/1.4928523
Loading
/content/aip/journal/jcp/143/9/10.1063/1.4928523
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/9/10.1063/1.4928523
2015-09-01
2016-06-29

Abstract

Enhanced kinetic stability of vapor-deposited glasses has been established for a variety of glass organic formers. Several recent reports indicate that vapor-deposited glasses can be orientationally anisotropic. In this work, we present results of extensive molecular simulations that mimic a number of features of the experimental vapor deposition process. The simulations are performed on a generic coarse-grained model and an all-atom representation of N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD), a small organic molecule whose vapor-deposited glasses exhibit considerable orientational anisotropy. The coarse-grained model adopted here is found to reproduce several key aspects reported in experiments. In particular, the molecular orientation of vapor-deposited glasses is observed to depend on substrate temperature during deposition. For a fixed deposition rate, the molecular orientation in the glasses changes from isotropic, at the glass transition temperature, , to slightly normal to the substrate at temperatures just below . Well below , molecular orientation becomes predominantly parallel to the substrate. The all-atom model is used to confirm some of the equilibrium structural features of TPD interfaces that arise above the glass transition temperature. We discuss a mechanism based on distinct orientations observed at equilibrium near the surface of the film, which get trapped within the film during the non-equilibrium process of vapor deposition.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/9/1.4928523.html;jsessionid=797e9CdRENl2WYAHPnyM3Oin.x-aip-live-06?itemId=/content/aip/journal/jcp/143/9/10.1063/1.4928523&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/9/10.1063/1.4928523&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/9/10.1063/1.4928523'
Right1,Right2,Right3,