Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/143/9/10.1063/1.4929790
1.
1.R. P. Feynman, Statistical Mechanics: A Set of Lectures (W. A. Benjamin, Reading, Massachusetts, 1972).
2.
2.P. O. Löwdin, Rev. Mod. Phys. 35, 724 (1963).
http://dx.doi.org/10.1103/RevModPhys.35.724
3.
3.A. Kohen and J. P. Klinman, Chem. Biol. 6, 191 (1999).
http://dx.doi.org/10.1016/S1074-5521(99)80058-1
4.
4.H. Engel, D. Doron, A. Kohen, and D. T. Major, J. Chem. Theory Comput. 8, 1223 (2012).
http://dx.doi.org/10.1021/ct200874q
5.
5.F. Calvo, C. Falvo, and P. Parneix, J. Phys. Chem. A 118, 5427 (2014).
http://dx.doi.org/10.1021/jp5040147
6.
6.J. Chen, X. Ren, X. Z. Li, D. Alfe, and E. Wang, J. Chem. Phys. 141, 024501 (2014).
http://dx.doi.org/10.1063/1.4886075
7.
7.P. Durlak and Z. Latajka, Phys. Chem. Chem. Phys. 16, 23026 (2014).
http://dx.doi.org/10.1039/C4CP02569E
8.
8.N. Kungwan, Y. Ogata, S. Hannongbua, and M. Tachikawa, Theor. Chem. Acc. 133, 1553 (2014).
http://dx.doi.org/10.1007/s00214-014-1553-y
9.
9.O. Marsalek, P.-Y. Chen, R. Dupuis, M. Benoit, M. Méheut, Z. Bačić, and M. E. Tuckerman, J. Chem. Theory Comput. 10, 1440 (2014).
http://dx.doi.org/10.1021/ct400911m
10.
10.S. Wolf, E. Curotto, and M. Mella, Int. J. Quantum Chem. 114, 611 (2014).
http://dx.doi.org/10.1002/qua.24647
11.
11.K. Y. Wong, Y. Xu, and D. M. York, J. Comput. Chem. 35, 1302 (2014).
http://dx.doi.org/10.1002/jcc.23628
12.
12.A. Kuki and P. G. Wolynes, Science 236, 1647 (1987).
http://dx.doi.org/10.1126/science.3603005
13.
13.L. Muhlbacher, J. Ankerhold, and A. Komnik, Phys. Rev. Lett. 95, 220404 (2005).
http://dx.doi.org/10.1103/physrevlett.95.220404
14.
14.J. S. Kretchmer and T. F. Miller 3rd, J. Chem. Phys. 138, 134109 (2013).
http://dx.doi.org/10.1063/1.4797462
15.
15.F. Calvo, P. Parneix, and N. T. Van-Oanh, J. Chem. Phys. 132, 124308 (2010).
http://dx.doi.org/10.1063/1.3367719
16.
16.N. Faruk, M. Schmidt, H. Li, R. J. Le Roy, and P. N. Roy, J. Chem. Phys. 141, 014310 (2014).
http://dx.doi.org/10.1063/1.4885275
17.
17.P. Sindzingre, D. M. Ceperley, and M. L. Klein, Phys. Rev. Lett. 67, 1871 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.1871
18.
18.D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).
http://dx.doi.org/10.1103/RevModPhys.67.279
19.
19.J. Chen, X. Z. Li, Q. Zhang, M. I. Probert, C. J. Pickard, R. J. Needs, A. Michaelides, and E. Wang, Nat. Commun. 4, 2064 (2013).
http://dx.doi.org/10.1038/ncomms3064
20.
20.M. A. Morales, J. M. McMahon, C. Pierleoni, and D. M. Ceperley, Phys. Rev. Lett. 110, 065702 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.065702
21.
21.C. M. Herdman, A. Rommal, and A. Del Maestro, Phys. Rev. B 89, 224502 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.224502
22.
22.R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
23.
23.D. Chandler and P. G. Wolynes, J. Chem. Phys. 74, 4078 (1981).
http://dx.doi.org/10.1063/1.441588
24.
24.K. S. Schweizer, R. M. Stratt, D. Chandler, and P. G. Wolynes, J. Chem. Phys. 75, 1347 (1981).
http://dx.doi.org/10.1063/1.442141
25.
25.M. F. Herman, E. J. Bruskin, and B. J. Berne, J. Chem. Phys. 76, 5150 (1982).
http://dx.doi.org/10.1063/1.442815
26.
26.B. De Raedt, M. Sprik, and M. L. Klein, J. Chem. Phys. 80, 5719 (1984).
http://dx.doi.org/10.1063/1.446641
27.
27.M. Parrinello and A. Rahman, J. Chem. Phys. 80, 860 (1984).
http://dx.doi.org/10.1063/1.446740
28.
28.R. D. Coalson, D. L. Freeman, and J. D. Doll, J. Chem. Phys. 85, 4567 (1986).
http://dx.doi.org/10.1063/1.451778
29.
29.M. E. Tuckerman, B. J. Berne, G. J. Martyna, and M. L. Klein, J. Chem. Phys. 99, 2796 (1993).
http://dx.doi.org/10.1063/1.465188
30.
30.G. A. Voth, Coarse-Graining of Condensed Phase and Biomolecular Systems (CRC Press, Boca Raton, 2009).
31.
31.J. Cao and G. A. Voth, J. Chem. Phys. 100, 5093 (1994).
http://dx.doi.org/10.1063/1.467175
32.
32.See supplementary material at http://dx.doi.org/10.1063/1.4929790 for complete derivations of the results presented in Sec. II. Technical details on the numerical simulations presented in Sec. III are given in the Supplementary Material, but not in the Appendix.[Supplementary Material]
33.
33.W. G. Noid, J.-W. Chu, G. S. Ayton, V. Krishna, S. Izvekov, G. A. Voth, A. Das, and H. C. Andersen, J. Chem. Phys. 128, 244114 (2008).
http://dx.doi.org/10.1063/1.2938860
34.
34.S. Izvekov and G. A. Voth, J. Phys. Chem. B 109, 2469 (2005).
http://dx.doi.org/10.1021/jp044629q
35.
35.A. V. Sinitskiy and G. A. Voth, Chem. Phys. 422, 165 (2013).
http://dx.doi.org/10.1016/j.chemphys.2013.01.024
36.
36.H. Weyl, Z. Phys. 46, 1 (1927).
http://dx.doi.org/10.1007/BF02055756
37.
37.M. G. Saunders and G. A. Voth, Annu. Rev. Biophys. 42, 73 (2013).
http://dx.doi.org/10.1146/annurev-biophys-083012-130348
38.
38.J. F. Dama, A. V. Sinitskiy, M. McCullagh, J. Weare, B. Roux, A. R. Dinner, and G. A. Voth, J. Chem. Theory Comput. 9, 2466 (2013).
http://dx.doi.org/10.1021/ct4000444
39.
39.A. Davtyan, J. F. Dama, A. V. Sinitskiy, and G. A. Voth, J. Chem. Theory Comput. 10, 5265 (2014).
http://dx.doi.org/10.1021/ct500834t
http://aip.metastore.ingenta.com/content/aip/journal/jcp/143/9/10.1063/1.4929790
Loading
/content/aip/journal/jcp/143/9/10.1063/1.4929790
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/143/9/10.1063/1.4929790
2015-09-02
2016-12-10

Abstract

Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman’s imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/143/9/1.4929790.html;jsessionid=WCkXwBxh684PP3uC_UHMr6NF.x-aip-live-06?itemId=/content/aip/journal/jcp/143/9/10.1063/1.4929790&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/143/9/10.1063/1.4929790&pageURL=http://scitation.aip.org/content/aip/journal/jcp/143/9/10.1063/1.4929790'
Right1,Right2,Right3,