Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/10/10.1063/1.4943043
1.
1.C. S. Goh, D. Milburn, and M. Gerstein, Curr. Opin. Struct. Biol. 14, 104 (2004).
http://dx.doi.org/10.1016/j.sbi.2004.01.005
2.
2.B. Ma, S. Kumar, C. J. Tsai, and R. Nussinov, Protein Eng. 12, 713 (1999).
http://dx.doi.org/10.1093/protein/12.9.713
3.
3.J. F. Swain and L. M. Gierasch, Curr. Opin. Struct. Biol. 16, 102 (2006).
http://dx.doi.org/10.1016/j.sbi.2006.01.003
4.
4.D. D. Boehr, R. Nussinov, and P. E. Wright, Nat. Chem. Biol. 5, 789 (2009).
http://dx.doi.org/10.1038/nchembio.232
5.
5.K. Henzler-Wildman and D. Kern, Nature 450, 964 (2007).
http://dx.doi.org/10.1038/nature06522
6.
6.P. I. Zhuravlev and G. A. Papoian, Q. Rev. Biophys. 43, 295 (2010).
http://dx.doi.org/10.1017/S0033583510000119
7.
7.J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and P. G. Wolynes, Proteins 21, 167 (1995).
http://dx.doi.org/10.1002/prot.340210302
8.
8.S. Kumar, B. Ma, C. J. Tsai, N. Sinha, and R. Nussinov, Protein Sci. 9, 10 (2000).
http://dx.doi.org/10.1110/ps.9.1.10
9.
9.R. G. Smock and L. M. Gierasch, Science 324, 198 (2009).
http://dx.doi.org/10.1126/science.1169377
10.
10.V. J. Hilser, J. O. Wrabl, and H. N. Motlagh, Annu. Rev. Biophys. 41, 585 (2012).
http://dx.doi.org/10.1146/annurev-biophys-050511-102319
11.
11.H. N. Motlagh, J. O. Wrabl, J. Li, and V. J. Hilser, Nature 508, 331 (2014).
http://dx.doi.org/10.1038/nature13001
12.
12.K. G. Daniels, Y. Suo, and T. G. Oas, Proc. Natl. Acad. Sci. U. S. A. 112, 9352 (2015).
http://dx.doi.org/10.1073/pnas.1502084112
13.
13.H. Kenzaki, N. Koga, N. Hori, R. Kanada, W. Li, K. Okazaki, X. Q. Yao, and S. Takada, J. Chem. Theory Comput. 7, 1979 (2011).
http://dx.doi.org/10.1021/ct2001045
14.
14.K. Okazaki and S. Takada, Proc. Natl. Acad. Sci. U. S. A. 105, 11182 (2008).
http://dx.doi.org/10.1073/pnas.0802524105
15.
15.W. Li, W. Wang, and S. Takada, Proc. Natl. Acad. Sci. U. S. A. 111, 10550 (2014).
http://dx.doi.org/10.1073/pnas.1402768111
16.
16.See supplementary material at http://dx.doi.org/10.1063/1.4943043 for additional figures.[Supplementary Material]
17.
17.J. Monod, J. Wyman, and J. P. Changeux, J. Mol. Biol. 12, 88 (1965).
http://dx.doi.org/10.1016/S0022-2836(65)80285-6
18.
18.J. P. Changeux, Annu. Rev. Biophys. 41, 103 (2012).
http://dx.doi.org/10.1146/annurev-biophys-050511-102222
19.
19.Q. Cui and M. Karplus, Protein Sci. 17, 1295 (2008).
http://dx.doi.org/10.1110/ps.03259908
20.
20.R. E. Klevit, D. C. Dalgarno, B. A. Levine, and R. J. Williams, Eur. J. Biochem. 139, 109 (1984).
http://dx.doi.org/10.1111/j.1432-1033.1984.tb07983.x
21.
21.C. L. A. Wang, Biochem. Biophys. Res. Commun. 130, 426 (1985).
http://dx.doi.org/10.1016/0006-291X(85)90434-6
22.
22.S. Linse, A. Helmersson, and S. Forsen, J. Biol. Chem. 266, 8050 (1991).
23.
23.P. M. Bayley, W. A. Findlay, and S. R. Martin, Protein Sci. 5, 1215 (1996).
http://dx.doi.org/10.1002/pro.5560050701
24.
24.L. Masino, S. R. Martin, and P. M. Bayley, Protein Sci. 9, 1519 (2000).
http://dx.doi.org/10.1110/ps.9.8.1519
25.
25.M. I. Stefan, S. J. Edelstein, and N. Le Novère, Proc. Natl. Acad. Sci. U. S. A. 105, 10768 (2008).
http://dx.doi.org/10.1073/pnas.0804672105
26.
26.M. I. Stefan, S. J. Edelstein, and N. Le Novère, BMC Syst. Biol. 3, 68 (2009).
http://dx.doi.org/10.1186/1752-0509-3-68
27.
27.M. Lai, D. Brun, S. J. Edelstein, and N. Le Novère, PLoS Comput. Biol. 11, e1004063 (2015).
http://dx.doi.org/10.1371/journal.pcbi.1004063
28.
28.B. R. Sorensen and M. A. Shea, Biochemistry 37, 4244 (1998).
http://dx.doi.org/10.1021/bi9718200
29.
29.R. A. Newman, W. S. Vanscyoc, B. R. Sorensen, O. R. Jaren, and M. A. Shea, Proteins 71, 1792 (2008).
http://dx.doi.org/10.1002/prot.21861
30.
30.G. Barbato, M. Ikura, L. E. Kay, R. W. Pastor, and A. Bax, Biochemistry 31, 5269 (1992).
http://dx.doi.org/10.1021/bi00138a005
31.
31.J. Evenäs, S. Forsén, A. Malmendal, and M. Akke, J. Mol. Biol. 289, 603 (1999).
http://dx.doi.org/10.1006/jmbi.1999.2770
32.
32.J. Evenäs, A. Malmendal, and M. Akke, Structure 9, 185 (2001).
http://dx.doi.org/10.1016/S0969-2126(01)00575-5
33.
33.D. Vigil, S. C. Gallagher, J. Trewhella, and A. E. García, Biophys. J. 80, 2082 (2001).
http://dx.doi.org/10.1016/S0006-3495(01)76182-6
34.
34.R. Chattopadhyaya, W. E. Meador, A. R. Means, and F. A. Quiocho, J. Mol. Biol. 228, 1177 (1992).
http://dx.doi.org/10.1016/0022-2836(92)90324-D
35.
35.H. Kuboniwa, N. Tjandra, S. Grzesiek, H. Ren, C. B. Klee, and A. Bax, Nat. Struct. Biol. 2, 768 (1995).
http://dx.doi.org/10.1038/nsb0995-768
36.
36.C. R. Rabl, S. R. Martin, E. Neumann, and P. M. Bayley, Biophys. Chem. 101-102, 553 (2002).
http://dx.doi.org/10.1016/S0301-4622(02)00150-3
37.
37.S. Marzen, H. G. Garcia, and R. Phillips, J. Mol. Biol. 425, 1433 (2013).
http://dx.doi.org/10.1016/j.jmb.2013.03.013
38.
38.J. Gifford, M. Walsh, and H. Vogel, Biochem. J. 405, 199 (2007).
http://dx.doi.org/10.1042/BJ20070255
39.
39.J. Evenäs, A. Malmendal, E. Thulin, G. Carlström, and S. Forsén, Biochemistry 37, 13744 (1998).
http://dx.doi.org/10.1021/bi9806448
40.
40.A. Malmendal, J. Evenäs, S. Forsén, and M. Akke, J. Mol. Biol. 293, 883 (1999).
http://dx.doi.org/10.1006/jmbi.1999.3188
41.
41.M. R. Beccia, S. Sauge-Merle, D. Lemaire, N. Brémond, R. Pardoux, S. Blangy, P. Guilbaud, and C. Berthomieu, J. Biol. Inorg. Chem. 20, 905 (2015).
http://dx.doi.org/10.1007/s00775-015-1275-1
42.
42.Y. Ye, H. W. Lee, W. Yang, S. Shealy, and J. J. Yang, J. Am. Chem. Soc. 127, 3743 (2005).
http://dx.doi.org/10.1021/ja042786x
43.
43.Y. G. Chen and G. Hummer, J. Am. Chem. Soc. 129, 2414 (2007).
http://dx.doi.org/10.1021/ja067791a
44.
44.P. Nandigrami and J. J. Portman, J. Chem. Phys. 144, 105102 (2016).
http://dx.doi.org/10.1063/1.4943130
45.
45.J. Stigler and M. Rief, Proc. Natl. Acad. Sci. U. S. A. 109, 17814 (2012).
http://dx.doi.org/10.1073/pnas.1201801109
46.
46.Y. Waltersson, S. Linse, P. Brodin, and T. Grundstroem, Biochemistry 32, 7866 (1993).
http://dx.doi.org/10.1021/bi00082a005
47.
47.G. S. Adair et al., J. Biol. Chem. 63, 529 (1925).
48.
48.J. Jiang, Y. Zhou, J. Zou, Y. Chen, P. Patel, J. Yang, and E. Balog, Biochem. J. 432, 89 (2010).
http://dx.doi.org/10.1042/BJ20100505
49.
49.S. Tripathi and J. J. Portman, Proc. Natl. Acad. Sci. U. S. A. 106, 2104 (2009).
http://dx.doi.org/10.1073/pnas.0806872106
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/10/10.1063/1.4943043
Loading
/content/aip/journal/jcp/144/10/10.1063/1.4943043
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/10/10.1063/1.4943043
2016-03-10
2016-09-25

Abstract

Interactions between a protein and a ligand are often accompanied by a redistribution of the population of thermally accessible conformations. This dynamic response of the protein’s functional energy landscape enables a protein to modulate binding affinities and control binding sensitivity to ligand concentration. In this paper, we investigate the structural origins of binding affinity and allosteric cooperativity of binding two Ca2+ ions to each domain of Calmodulin (CaM) through simulations of a simple coarse-grained model. In this model, the protein’sconformational transitions between open and closed conformational ensembles are simulated explicitly and ligand binding and unbinding are treated implicitly within the grand canonical ensemble. Ligand binding is cooperative because the binding sites are coupled through a shift in the dominant conformational ensemble upon binding. The classic Monod-Wyman-Changeux model of allostery with appropriate binding free energies to the open and closed ensembles accurately describes the simulated binding thermodynamics. The simulations predict that the two domains of CaM have distinct binding affinity and cooperativity. In particular, the C-terminal domain binds Ca2+ with higher affinity and greater cooperativity than the N-terminal domain. From a structural point of view, the affinity of an individual binding loop depends sensitively on the loop’s structural compatibility with the ligand in the bound ensemble, as well as the conformational flexibility of the binding site in the unbound ensemble.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/10/1.4943043.html;jsessionid=waxRqhmqcqNZJarsajtJFJR8.x-aip-live-03?itemId=/content/aip/journal/jcp/144/10/10.1063/1.4943043&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/10/10.1063/1.4943043&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/10/10.1063/1.4943043'
Right1,Right2,Right3,