Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/10/10.1063/1.4943387
1.
1.E. A. Doherty and J. A. Doudna, Annu. Rev. Biochem. 69, 597 (2000).
http://dx.doi.org/10.1146/annurev.biochem.69.1.597
2.
2.T. M. Henkin, Genes Dev. 22, 3383 (2008).
http://dx.doi.org/10.1101/gad.1747308
3.
3.A. Serganov and D. J. Patel, Nat. Rev. Genet. 8, 776 (2007).
http://dx.doi.org/10.1038/nrg2172
4.
4.Y. S. Lee and A. Dutta, Annu. Rev. Pathol.: Mech. Dis. 4, 199 (2009).
http://dx.doi.org/10.1146/annurev.pathol.4.110807.092222
5.
5.R. M. Schiffelers, A. Ansari, J. Xu, Q. Zhou, Q. Tang, G. Storm, G. Molema, P. Y. Lu, P. V. Scaria, and M. C. Woodle, Nucleic Acids Res. 32, e149 (2004).
http://dx.doi.org/10.1093/nar/gnh140
6.
6.J. L. Rinn, M. Kertesz, J. K. Wang, S. L. Squazzo, X. Xu, S. A. Brugmann, L. H. Goodnough, J. A. Helms, P. J. Farnham, E. Segal, and H. Y. Chang, Cell 129, 1311 (2007).
http://dx.doi.org/10.1016/j.cell.2007.05.022
7.
7.A. Pauli, J. L. Rinn, and A. F. Schier, Nat. Rev. Genet. 12, 136 (2011).
http://dx.doi.org/10.1038/nrg2904
8.
8.A. A. Chen and A. E. García, Proc. Natl. Acad. Sci. U. S. A. 110, 16820 (2013).
http://dx.doi.org/10.1073/pnas.1309392110
9.
9.R. Das and D. Baker, Proc. Natl. Acad. Sci. U. S. A. 104, 14664 (2007).
http://dx.doi.org/10.1073/pnas.0703836104
10.
10.J. L. Klepeis, K. Lindorff-Larsen, R. O. Dror, and D. E. Shaw, Curr. Opin. Struct. Biol. 19, 120 (2009).
http://dx.doi.org/10.1016/j.sbi.2009.03.004
11.
11.D.-A. Silva, D. R. Weiss, F. Pardo Avila, L.-T. Da, M. Levitt, D. Wang, and X. Huang, Proc. Natl. Acad. Sci. U. S. A. 111, 7665 (2014).
http://dx.doi.org/10.1073/pnas.1315751111
12.
12.W. G. Noid, J. Chem. Phys. 139, 090901 (2013).
http://dx.doi.org/10.1063/1.4818908
13.
13.T. Cragnolini, P. Derreumaux, and S. Pasquali, J. Phys. Chem. B 117, 8047 (2013).
http://dx.doi.org/10.1021/jp400786b
14.
14.M. G. Saunders and G. A. Voth, Annu. Rev. Biophys. 42, 73 (2013).
http://dx.doi.org/10.1146/annurev-biophys-083012-130348
15.
15.C. Hyeon and D. Thirumalai, Proc. Natl. Acad. Sci. U. S. A. 102, 6789 (2005).
http://dx.doi.org/10.1073/pnas.0408314102
16.
16.S. Pasquali and P. Derreumaux, J. Phys. Chem. B 114, 11957 (2010).
http://dx.doi.org/10.1021/jp102497y
17.
17.N. A. Denesyuk and D. Thirumalai, J. Phys. Chem. B 117, 4901 (2013).
http://dx.doi.org/10.1021/jp401087x
18.
18.T. A. Knotts, N. Rathore, D. C. Schwartz, and J. J. de Pablo, J. Chem. Phys. 126, 084901 (2007).
http://dx.doi.org/10.1063/1.2431804
19.
19.A.-M. Florescu and M. Joyeux, J. Chem. Phys. 135, 085105 (2011).
http://dx.doi.org/10.1063/1.3626870
20.
20.E. J. Sambriski, D. C. Schwartz, and J. J. de Pablo, Biophys. J. 96, 1675 (2009).
http://dx.doi.org/10.1016/j.bpj.2008.09.061
21.
21.T. E. Ouldridge, A. A. Louis, and J. P. K. Doye, J. Chem. Phys. 134, 085101 (2011).
http://dx.doi.org/10.1063/1.3552946
22.
22.Y. Liu, E. Haddadian, T. R. Sosnick, K. F. Freed, and H. Gong, Biophys. J. 105, 1248 (2013).
http://dx.doi.org/10.1016/j.bpj.2013.07.033
23.
23.Y.-Z. Shi, F.-H. Wang, Y.-Y. Wu, and Z.-J. Tan, J. Chem. Phys. 141, 105102 (2014).
http://dx.doi.org/10.1063/1.4894752
24.
24.S.-J. Chen, Annu. Rev. Biophys. 37, 197 (2008).
http://dx.doi.org/10.1146/annurev.biophys.37.032807.125957
25.
25.G. C. L. Wong and L. Pollack, Annu. Rev. Phys. Chem. 61, 171 (2010).
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104436
26.
26.J. L. Boots, M. D. Canny, E. Azimi, and A. Pardi, RNA 14, 2212 (2008).
http://dx.doi.org/10.1261/rna.1010808
27.
27.D. E. Draper, D. Grilley, and A. M. Soto, Annu. Rev. Biophys. Biomol. Struct. 34, 221 (2005).
http://dx.doi.org/10.1146/annurev.biophys.34.040204.144511
28.
28.D. Leipply and D. Draper, Biochemistry 50, 2790 (2011).
http://dx.doi.org/10.1021/bi101948k
29.
29.S. A. Woodson, Curr. Opin. Chem. Biol. 9, 104 (2005).
http://dx.doi.org/10.1016/j.cbpa.2005.02.004
30.
30.J. Lipfert, S. Doniach, R. Das, and D. Herschlag, Annu. Rev. Biochem. 83, 813841 (2014).
http://dx.doi.org/10.1146/annurev-biochem-060409-092720
31.
31.V. K. Misra and D. E. Draper, Biopolymers 48, 113 (1998).
http://dx.doi.org/10.1002/(SICI)1097-0282(1998)48:2¡113::AID-BIP3¿3.0.CO;2-Y
32.
32.N. Go and H. Abe, Biopolymers 20, 991 (1981).
http://dx.doi.org/10.1002/bip.1981.360200511
33.
33.N. A. Denesyuk and D. Thirumalai, Nat. Chem. 7, 793 (2015).
http://dx.doi.org/10.1038/nchem.2330
34.
34.R. L. Hayes, J. K. Noel, U. Mohanty, P. C. Whitford, S. P. Hennelly, J. N. Onuchic, and K. Y. Sanbonmatsu, J. Am. Chem. Soc. 134, 12043 (2012).
http://dx.doi.org/10.1021/ja301454u
35.
35.R. L. Hayes, J. K. Noel, P. C. Whitford, U. Mohanty, K. Y. Sanbonmatsu, and J. N. Onuchic, Biophys. J. 106, 1508 (2014).
http://dx.doi.org/10.1016/j.bpj.2014.01.042
36.
36.R. L. Hayes, J. K. Noel, A. Mandic, P. C. Whitford, K. Y. Sanbonmatsu, U. Mohanty, and J. N. Onuchic, Phys. Rev. Lett. 114, 258105 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.258105
37.
37.Z. Xia, D. R. Bell, Y. Shi, and P. Ren, J. Phys. Chem. B 117, 3135 (2013).
http://dx.doi.org/10.1021/jp400751w
38.
38.C. H. Mak and P. S. Henke, J. Chem. Theory Comput. 9, 621 (2013).
http://dx.doi.org/10.1021/ct300760y
39.
39.P. S. Henke and C. H. Mak, J. Chem. Phys. 141, 064116 (2014).
http://dx.doi.org/10.1063/1.4892059
40.
40.H. Chen, S. P. Meisburger, S. A. Pabit, J. L. Sutton, W. W. Webb, and L. Pollack, Proc. Natl. Acad. Sci. U. S. A. 109, 799 (2012).
http://dx.doi.org/10.1073/pnas.1119057109
41.
41.A. Y. L. Sim, J. Lipfert, D. Herschlag, and S. Doniach, Phys. Rev. E 86, 021901 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.021901
42.
42.J. W. Ponder and F. M. Richards, J. Comput. Chem. 8, 1016 (1987).
http://dx.doi.org/10.1002/jcc.540080710
43.
43.W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995).
http://dx.doi.org/10.1021/ja00124a002
44.
44.J. J. Trausch and R. T. Batey, Chem. Biol. 21, 205 (2014).
http://dx.doi.org/10.1016/j.chembiol.2013.11.012
45.
45.S. Doose, H. Barsch, and M. Sauer, Biophys. J. 93, 1224 (2007).
http://dx.doi.org/10.1529/biophysj.107.107342
46.
46.M. Doi and M. Edward, The Theory of Polymer Dynamics (Oxford University Press, Oxford, UK, 1986).
47.
47.J. E. Kohn, I. S. Millett, J. Jacob, B. Zagrovic, T. M. Dillon, N. Cingel, R. S. Dothager, S. Seifert, P. Thiyagarajan, T. R. Sosnick, M. Z. Hasan, V. S. Pande, I. Ruczinski, S. Doniach, and K. W. Plaxco, Proc. Natl. Acad. Sci. U. S. A. 101, 12491 (2004).
http://dx.doi.org/10.1073/pnas.0403643101
48.
48.K. Rechendorff, G. Witz, J. Adamcik, and G. Dietler, J. Chem. Phys. 131, 095103 (2009).
http://dx.doi.org/10.1063/1.3216111
49.
49.F. Alarcón, G. Pérez-Hernández, E. Pérez, and A. Gama Goicochea, Eur. Biophys. J. 42, 661 (2013).
http://dx.doi.org/10.1007/s00249-013-0915-z
50.
50.D. R. Jacobson, D. B. McIntosh, and O. A. Saleh, Biophys. J. 105, 2569 (2013).
http://dx.doi.org/10.1016/j.bpj.2013.10.019
51.
51.C. V. Bizarro, A. Alemany, and F. Ritort, Nucleic Acids Res. 40, 6922 (2012).
http://dx.doi.org/10.1093/nar/gks289
52.
52.J. B. Mills, E. Vacano, and P. J. Hagerman, J. Mol. Biol. 285, 245 (1999).
http://dx.doi.org/10.1006/jmbi.1998.2287
53.
53.S. B. Smith, Y. Cui, and C. Bustamante, Science 271, 795 (1996).
http://dx.doi.org/10.1126/science.271.5250.795
54.
54.C. Rivetti, C. Walker, and C. Bustamante, J. Mol. Biol. 280, 41 (1998).
http://dx.doi.org/10.1006/jmbi.1998.1830
55.
55.M. C. Murphy, I. Rasnik, W. Cheng, T. M. Lohman, and T. Ha, Biophys. J. 86, 2530 (2004).
http://dx.doi.org/10.1016/S0006-3495(04)74308-8
56.
56.E. U. Esis, I. Achter, and G. I. Eixese, Biopolymers 10, 1625 (1971).
http://dx.doi.org/10.1002/bip.360100916
57.
57.B. Tinland, A. Pluen, J. Sturm, and G. Weill, Macromolecules 30, 5763 (1997).
http://dx.doi.org/10.1021/ma970381+
58.
58.S. V. Kuznetsov, Y. Shen, A. S. Benight, and A. Ansari, Biophys. J. 81, 2864 (2001).
http://dx.doi.org/10.1016/S0006-3495(01)75927-9
59.
59.J. Wang, P. Cieplak, and P. A. Kollman, J. Comput. Chem. 21, 1049 (2000).
http://dx.doi.org/10.1002/1096-987X(200009)21:12¡1049::AID-JCC3¿3.0.CO;2-F
60.
60.C. H. Mak, J. Phys. Chem. B 119, 14840 (2015).
http://dx.doi.org/10.1021/acs.jpcb.5b08077
61.
61.F.-H. Wang, Y.-Y. Wu, and Z.-J. Tan, Biopolymers 99, 370 (2013).
http://dx.doi.org/10.1002/bip.22189
62.
62.J. A. Abels, F. Moreno-Herrero, T. van der Heijden, C. Dekker, and N. H. Dekker, Biophys. J. 88, 2737 (2005).
http://dx.doi.org/10.1529/biophysj.104.052811
63.
63.P. J. Hagerman, Annu. Rev. Biophys. Biomol. Struct. 26, 139 (1997).
http://dx.doi.org/10.1146/annurev.biophys.26.1.139
64.
64.R. K. Z. Tan, A. S. Petrov, and S. C. Harvey, J. Chem. Theory Comput. 2, 529 (2006).
http://dx.doi.org/10.1021/ct050323r
65.
65.M. A. Jonikas, R. J. Radmer, A. Laederach, R. Das, S. Pearlman, D. Herschlag, and R. B. Altman, RNA 15, 189 (2009).
http://dx.doi.org/10.1261/rna.1270809
66.
66.A. M. Mustoe, H. M. Al-Hashimi, and C. L. Brooks, J. Phys. Chem. B 118, 2615 (2014).
http://dx.doi.org/10.1021/jp411478x
67.
67.R. C. Armstrong, J. Chem. Phys. 60, 724 (1974).
http://dx.doi.org/10.1063/1.1681141
68.
68.J. C. Chu and C. H. Mak, J. Chem. Phys. 110, 2669 (1999).
http://dx.doi.org/10.1063/1.477989
69.
69.M. J. Stevens and K. Kremer, J. Chem. Phys. 103, 1669 (1995).
http://dx.doi.org/10.1063/1.470698
70.
70.M. C. Linak, R. Tourdot, and K. D. Dorfman, J. Chem. Phys. 135, 205102 (2011).
http://dx.doi.org/10.1063/1.3662137
71.
71.M. Bulacu, N. Goga, W. Zhao, G. Rossi, L. Monticelli, X. Periole, D. P. Tieleman, and S. J. Marrink, J. Chem. Theory Comput. 9, 3282 (2013).
http://dx.doi.org/10.1021/ct400219n
72.
72.M. Ullner and C. E. Woodward, Macromolecules 35, 1437 (2002).
http://dx.doi.org/10.1021/ma010863s
73.
73.J. H. Cate, A. R. Gooding, E. Podell, K. Zhou, B. L. Golden, C. E. Kundrot, T. R. Cech, and J. A. Doudna, Science 273, 1678 (1996).
http://dx.doi.org/10.1126/science.273.5282.1678
74.
74.L. A. Coonrod, J. R. Lohman, and J. A. Berglund, Biochemistry 51, 8330 (2012).
http://dx.doi.org/10.1021/bi300829w
75.
75.Y. Bai, R. Das, I. S. Millett, D. Herschlag, and S. Doniach, Proc. Natl. Acad. Sci. U. S. A. 102, 1035 (2005).
http://dx.doi.org/10.1073/pnas.0404448102
76.
76.N. Grønbech-Jensen, R. Mashl, R. Bruinsma, and W. Gelbart, Phys. Rev. Lett. 78, 2477 (1997).
http://dx.doi.org/10.1103/physrevlett.78.2477
77.
77.B.-Y. Ha and A. Liu, Phys. Rev. Lett. 79, 1289 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1289
78.
78.Z.-J. Tan and S.-J. Chen, Biophys. J. 91, 518 (2006).
http://dx.doi.org/10.1529/biophysj.106.084285
79.
79.S. A. Pabit, X. Qiu, J. S. Lamb, L. Li, S. P. Meisburger, and L. Pollack, Nucleic Acids Res. 37, 3887 (2009).
http://dx.doi.org/10.1093/nar/gkp257
80.
80.D. Chandler, J. Chem. Phys. 68, 2959 (1978).
http://dx.doi.org/10.1063/1.436049
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/10/10.1063/1.4943387
Loading
/content/aip/journal/jcp/144/10/10.1063/1.4943387
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/10/10.1063/1.4943387
2016-03-14
2016-09-28

Abstract

How to properly account for polyvalent counterions in a molecular dynamics simulation of polyelectrolytes such as nucleic acids remains an open question. Not only do counterions such as Mg2+ screen electrostatic interactions, they also produce attractive intrachain interactions that stabilize secondary and tertiary structures. Here, we show how a simple force field derived from a recently reported implicit counterion model can be integrated into a molecular dynamics simulation for RNAs to realistically reproduce key structural details of both single-stranded and base-paired RNA constructs. This divalent counterion model is computationally efficient. It works with existing atomistic force fields, or coarse-grained models may be tuned to work with it. We provide optimized parameters for a coarse-grained RNA model that takes advantage of this new counterion force field. Using the new model, we illustrate how the structural flexibility of RNA two-way junctions is modified under different salt conditions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/10/1.4943387.html;jsessionid=WzMD4AiCssMfUc8YL5XWrudc.x-aip-live-03?itemId=/content/aip/journal/jcp/144/10/10.1063/1.4943387&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/10/10.1063/1.4943387&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/10/10.1063/1.4943387'
Right1,Right2,Right3,