Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G. Fang, J. Maclennan, Y. Yi, M. Glaser, M. Farrow, E. Korblova, D. Walba, T. Furtak, and N. Clark, “Athermal photofluidization of glasses,” Nat. Commun. 4, 1521 (2013).
2.D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810816 (2003).
3.P. Hänggi and F. Marchesoni, “Artificial Brownian motors: Controlling transport on the nanoscale,” Rev. Mod. Phys. 81, 387 (2009).
4.R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569576 (2009).
5.H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442, 387393 (2006).
6.F. Ritort, “Single-molecule experiments in biological physics: Methods and applications,” J. Phys.: Condens. Matter 18, R531 (2006).
7.S. D. Caruthers, S. A. Wickline, and G. M. Lanza, “Nanotechnological applications in medicine,” Curr. Opin. Biotechnol. 18, 2630 (2007).
8.H. Cao, Z. Yu, J. Wang, J. O. Tegenfeldt, R. H. Austin, E. Chen, W. Wu, and S. Y. Chou, “Fabrication of 10 nm enclosed nanofluidic channels,” Appl. Phys. Lett. 81, 174176 (2002).
9.D. Shao and S. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86, 253107 (2005).
10.J. A. Delaire and K. Nakatani, “Linear and nonlinear optical properties of photochromic molecules and materials,” Chem. Rev. 100, 18171846 (2000).
11.N. Katsonis, M. Lubomska, M. M. Pollard, B. L. Feringa, and P. Rudolf, “Synthetic light-activated molecular switches and motors on surfaces,” Prog. Surf. Sci. 82, 407434 (2007).
12.W. R. Browne and B. L. Feringa, “Light switching of molecules on surfaces,” Annu. Rev. Phys. Chem. 60, 407428 (2009).
13.M. Kreuzer, L. Marrucci, and D. Paparo, “Light-induced modification of kinetic molecular properties: Enhancement of optical Kerr effect in absorbing liquids, photoinduced torque and molecular motors in dye-doped nematics,” J. Nonlinear Opt. Phys. Mater. 9, 157182 (2000).
14.T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature 485, 347349 (2012).
15.P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4, 699703 (2005).
16.G. Fang, N. Koral, C. Zhu, Y. Yi, M. A. Glaser, J. E. Maclennan, N. A. Clark, E. D. Korblova, and D. M. Walba, “Effect of concentration on the photo-orientation and relaxation dynamics of self-assembled monolayers of mixtures of an azobenzene-based triethoxysilane with octyltriethoxysilane,” Langmuir 27, 33363342 (2011).
17.G. Fang, Y. Shi, J. E. Maclennan, N. A. Clark, M. J. Farrow, and D. M. Walba, “Photo-reversible liquid crystal alignment using azobenzene-based self-assembled monolayers: Comparison of the bare monolayer and liquid crystal reorientation dynamics,” Langmuir 26, 1748217488 (2010).
18.I. Jánossy, “Molecular interpretation of the absorption-induced optical reorientation of nematic liquid crystals,” Phys. Rev. E 49, 2957 (1994).
19.L. Marrucci and D. Paparo, “Photoinduced molecular reorientation of absorbing liquid crystals,” Phys. Rev. E 56, 1765 (1997).
20.I. Janossy and L. Szabados, “Optical reorientation of nematic liquid crystals in the presence of photoisomerization,” Phys. Rev. E 58, 4598 (1998).
21.T. G. Pedersen and P. M. Johansen, “Mean-field theory of photoinduced molecular reorientation in azobenzene liquid crystalline side-chain polymers,” Phys. Rev. Lett. 79, 2470 (1997).
22.V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E 69, 061713 (2004).
23.Z. Sekkat, J. Wood, and W. Knoll, “Reorientation mechanism of azobenzenes within the trans. fwdarw. cis photoisomerization,” J. Phys. Chem. 99, 1722617234 (1995).
24.D. Statman and I. Janossy, “Study of photoisomerization of azo dyes in liquid crystals,” J. Chem. Phys. 118, 32223232 (2003).
25.A. Kiselev, “Kinetics of photoinduced anisotropy in azopolymers: Models and mechanisms,” J. Phys.: Condens. Matter 14, 13417 (2002).
26.J. Chen, D. Johnson, P. J. Bos, X. Wang, and J. L. West, “Model of liquid crystal alignment by exposure to linearly polarized ultraviolet light,” Phys. Rev. E 54, 1599 (1996).
27.L. Marrucci, D. Paparo, P. Maddalena, E. Massera, E. Prudnikova, and E. Santamato, “Role of guest-host intermolecular forces in photoinduced reorientation of dyed liquid crystals,” J. Chem. Phys. 107, 97839793 (1997).
28.C. C. Battaile, “The kinetic Monte Carlo method: Foundation, implementation, and application,” Comput. Methods Appl. Mech. Eng. 197, 33863398 (2008).
29.R. Tavarone, P. Charbonneau, and H. Stark, “Phase ordering of zig-zag and bow-shaped hard needles in two dimensions,” J. Chem. Phys. 143, 114505 (2015).
30.L. Berthier, “Dynamic heterogeneity in amorphous materials,” Physics 4, 42 (2011).
31.L. Berthier and G. Biroli, “Theoretical perspective on the glass transition and amorphous materials,” Rev. Mod. Phys. 83, 587 (2011).
32.A. D. Kiselev, V. G. Chigrinov, and H.-S. Kwok, “Kinetics of photoinduced ordering in azo-dye films: Two-state and diffusion models,” Phys. Rev. E 80, 011706 (2009).
33.Y. Yi, M. J. Farrow, E. Korblova, D. M. Walba, and T. E. Furtak, “High-sensitivity aminoazobenzene chemisorbed monolayers for photoalignment of liquid crystals,” Langmuir 25, 9971003 (2008).
34.V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley & Sons, 2008), Vol. 17.
35.Y. Yi, G. Fang, J. E. Maclennan, N. A. Clark, J. Dahdah, T. E. Furtak, K. Kim, M. J. Farrow, E. Korblova, and D. M. Walba, “Dynamics of cis isomers in highly sensitive amino-azobenzene monolayers: The effect of slow relaxation on photo-induced anisotropy,” J. Appl. Phys. 109, 103521 (2011).
36.M. F. Shlesinger, “Fractal time in condensed matter,” Annu. Rev. Phys. Chem. 39, 269290 (1988).
37.R. Metzler and J. Klafter, “From stretched exponential to inverse power-law: Fractional dynamics, Cole–Cole relaxation processes, and beyond,” J. Non-Cryst. Solids 305, 8187 (2002).
38.M. H. Vainstein, I. V. Costa, R. Morgado, and F. A. Oliveira, “Non-exponential relaxation for anomalous diffusion,” EPL 73, 726 (2006).
39.R. Böhmer, K. Ngai, C. Angell, and D. Plazek, “Nonexponential relaxations in strong and fragile glass formers,” J. Chem. Phys. 99, 42014209 (1993).
40.L. Brzozowski and E. H. Sargent, “Azobenzenes for photonic network applications: Third-order nonlinear optical properties,” J. Mater. Sci.: Mater. Electron. 12, 483489 (2001).
41.T. Cusati, G. Granucci, and M. Persico, “Photodynamics and time-resolved fluorescence of azobenzene in solution: A mixed quantum-classical simulation,” J. Am. Chem. Soc. 133, 51095123 (2011).
42.G. Tiberio, L. Muccioli, R. Berardi, and C. Zannoni, “How does the trans–cis photoisomerization of azobenzene take place in organic solvents?,” ChemPhysChem 11, 10181028 (2010).
43.A. Patti and A. Cuetos, “Brownian dynamics and dynamic Monte Carlo simulations of isotropic and liquid crystal phases of anisotropic colloidal particles: A comparative study,” Phys. Rev. E 86, 011403 (2012).
44.E. Sanz and D. Marenduzzo, “Dynamic Monte Carlo versus Brownian dynamics: A comparison for self-diffusion and crystallization in colloidal fluids,” J. Chem. Phys. 132, 194102 (2010).
45.H. Löwen, “Brownian dynamics of hard spherocylinders,” Phys. Rev. E 50, 1232 (1994).
46.P. Kählitz, M. Schoen, and H. Stark, “Clustering and mobility of hard rods in a quasicrystalline substrate potential,” J. Chem. Phys. 137, 224705 (2012).
47.T. G. Pedersen, P. Ramanujam, P. M. Johansen, and S. Hvilsted, “Quantum theory and experimental studies of absorption spectra and photoisomerization of azobenzene polymers,” J. Opt. Soc. Am. B 15, 27212730 (1998).
48.S. Elston and R. Sambles, The Optics of Thermotropic Liquid Crystals (Taylor & Francis, London, 1998).
49.P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences (McGraw–Hill, New York, 2003).
50.S. Franz and G. Parisi, “On non-linear susceptibility in supercooled liquids,” J. Phys.: Condens. Matter 12, 6335 (2000).
51.T. Kawasaki and H. Tanaka, “Structural signature of slow dynamics and dynamic heterogeneity in two-dimensional colloidal liquids: Glassy structural order,” J. Phys.: Condens. Matter 23, 194121 (2011).
52.Z. Zheng, F. Wang, and Y. Han, “Glass transitions in quasi-two-dimensional suspensions of colloidal ellipsoids,” Phys. Rev. Lett. 107, 065702 (2011).
53.M. Hurley and P. Harrowell, “Kinetic structure of a two-dimensional liquid,” Phys. Rev. E 52, 1694 (1995).
54.V. Teboul, J.-B. Accary, and M. Chrysos, “Isomerization of azobenzene and the enhancement of dynamic heterogeneities in molecular glass formers,” Phys. Rev. E 87, 032309 (2013).
55.P. Chaudhuri, L. Berthier, and W. Kob, “Universal nature of particle displacements close to glass and jamming transitions,” Phys. Rev. Lett. 99, 060604 (2007).
56.V. Teboul, M. Saiddine, J.-M. Nunzi, and J.-B. Accary, “An isomerization-induced cage-breaking process in a molecular glass former below Tg,” J. Chem. Phys. 134, 114517 (2011).
57.V. Teboul, M. Saiddine, and J.-M. Nunzi, “Isomerization-induced dynamic heterogeneity in a glass former below and above Tg,” Phys. Rev. Lett. 103, 265701 (2009).
58.O. Karthaus, M. Shimomura, M. Hioki, R. Tahara, and H. Nakamura, “Reversible photomorphism in surface monolayers,” J. Am. Chem. Soc. 118, 91749175 (1996).
59.J. Y. Shin and N. L. Abbott, “Using light to control dynamic surface tensions of aqueous solutions of water soluble surfactants,” Langmuir 15, 44044410 (1999).
60.K. Ichimura, S.-K. Oh, and M. Nakagawa, “Light-driven motion of liquids on a photoresponsive surface,” Science 288, 16241626 (2000).
61.J. Eastoe and A. Vesperinas, “Self-assembly of light-sensitive surfactants,” Soft Matter 1, 338347 (2005).
62.A. Diguet, R.-M. Guillermic, N. Magome, A. Saint-Jalmes, Y. Chen, K. Yoshikawa, and D. Baigl, “Photomanipulation of a droplet by the chromocapillary effect,” Angew. Chem., Int. Ed. 121, 94459448 (2009).
63.M. Schmitt and H. Stark, “Marangoni flow at droplet interfaces: Three-dimensional solution and applications,” Phys. Fluids 28, 012106 (2016).

Data & Media loading...


Article metrics loading...



Recent experiments have demonstrated that in a dense monolayer of photo-switchable dye methyl-red molecules the relaxation of an initial birefringence follows a power-law decay, typical for glass-like dynamics. The slow relaxation can efficiently be controlled and accelerated by illuminating the monolayer with circularly polarized light, which induces -isomerization cycles. To elucidate the microscopic mechanism, we develop a two-dimensional molecular model in which the and isomers are represented by straight and bent needles, respectively. As in the experimental system, the needles are allowed to rotate and to form overlaps but they cannot translate. The out-of-equilibrium rotational dynamics of the needles is generated using kinetic Monte Carlo simulations. We demonstrate that, in a regime of high density and low temperature, the power-law relaxation can be traced to the formation of spatio-temporal correlations in the rotational dynamics, i.e., dynamic heterogeneity. We also show that the nearly isotropic isomers can prevent dynamic heterogeneity from forming in the monolayer and that the relaxation then becomes exponential.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd