Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/11/10.1063/1.4943956
1.
1.P. P. Ewald, Ann. Phys. (Leipzig) 64, 253 (1921).
http://dx.doi.org/10.1002/andp.19213690304
2.
2.S. W. de Leeuw, J. W. Perram, and E. R. Smith, Proc. R. Soc. London A 373, 27 (1980).
http://dx.doi.org/10.1098/rspa.1980.0135
3.
3.U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995).
http://dx.doi.org/10.1063/1.470117
4.
4.C. Sagui and T. A. Darden, Annu. Rev. Biophys. Biomol. Struct. 28, 155 (1999).
http://dx.doi.org/10.1146/annurev.biophys.28.1.155
5.
5.G. A. Cisneros, M. Karttunen, P. Ren, and C. Sagui, Chem. Rev. 114, 779 (2013).
http://dx.doi.org/10.1021/cr300461d
6.
6.I. Fukuda and H. Nakamura, Biophys. Rev. 4, 161 (2012).
http://dx.doi.org/10.1007/s12551-012-0089-4
7.
7.L. Onsager, J. Am. Chem. Soc. 58, 1486 (1936).
http://dx.doi.org/10.1021/ja01299a050
8.
8.J. A. Barker and R. O. Watts, Mol. Phys. 26, 789 (1973).
http://dx.doi.org/10.1080/00268977300102101
9.
9.J. A. Barker, Mol. Phys. 83, 1057 (1994).
http://dx.doi.org/10.1080/00268979400101781
10.
10.M. Saito, J. Chem. Phys. 101, 4055 (1994).
http://dx.doi.org/10.1063/1.468411
11.
11.C. Peter, W. F. van Gunsteren, and P. H. Hünenberger, J. Chem. Phys. 119, 12205 (2003).
http://dx.doi.org/10.1063/1.1624054
12.
12.M. Patra, M. Karttunen, M. T. Hyvönen, E. Falck, and I. Vattulainen, J. Phys. Chem. B 108, 4485 (2004).
http://dx.doi.org/10.1021/jp031281a
13.
13.A. Baumketner and J. E. Shea, J. Phys. Chem. B 109, 21322 (2005).
http://dx.doi.org/10.1021/jp051325a
14.
14.Y. Yonetani, J. Chem. Phys. 124, 204501 (2006).
http://dx.doi.org/10.1063/1.2198208
15.
15.I. G. Tironi, R. Sperb, P. E. Smith, and W. F. van Gunsteren, J. Chem. Phys. 102, 5451 (1995).
http://dx.doi.org/10.1063/1.469273
16.
16.P. H. Hünenberger and W. F. van Gunsteren, J. Chem. Phys. 108, 6117 (1998).
http://dx.doi.org/10.1063/1.476022
17.
17.E. Yakub and C. Ronchi, J. Chem. Phys. 119, 11556 (2003).
http://dx.doi.org/10.1063/1.1624364
18.
18.X. Wu and B. R. Brooks, J. Chem. Phys. 122, 044107 (2005).
http://dx.doi.org/10.1063/1.1836733
19.
19.X. Wu and B. R. Brooks, J. Chem. Phys. 131, 024107 (2009).
http://dx.doi.org/10.1063/1.3160730
20.
20.D. Wolf, Phys. Rev. Lett. 68, 3315 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.3315
21.
21.D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, J. Chem. Phys. 110, 8254 (1999).
http://dx.doi.org/10.1063/1.478738
22.
22.D. Zahn, B. Schilling, and S. M. Kast, J. Phys. Chem. B 106, 10725 (2002).
http://dx.doi.org/10.1021/jp025949h
23.
23.C. Avendaño and A. Gil-Villegas, Mol. Phys. 104, 1475 (2006).
http://dx.doi.org/10.1080/00268970600551155
24.
24.C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006).
http://dx.doi.org/10.1063/1.2206581
25.
25.F. Ercolessi and J. B. Adams, Europhys. Lett. 26, 583 (1994).
http://dx.doi.org/10.1209/0295-5075/26/8/005
26.
26.Q. Shi, P. Liu, and G. A. Voth, J. Phys. Chem. B 112, 16230 (2008).
http://dx.doi.org/10.1021/jp807205q
27.
27.Y. G. Chen and J. D. Weeks, Proc. Natl. Acad. Sci. U. S. A. 103, 7560 (2006).
http://dx.doi.org/10.1073/pnas.0600282103
28.
28.Y. Lin, A. Baumketner, S. Deng, Z. Xu, D. Jacobs, and W. Cai, J. Chem. Phys. 131, 154103 (2009).
http://dx.doi.org/10.1063/1.3245232
29.
29.Y. Lin, A. Baumketner, W. Song, S. Deng, D. Jacobs, and W. Cai, J. Chem. Phys. 134, 044105 (2011).
http://dx.doi.org/10.1063/1.3530094
30.
30.I. Fukuda, J. Chem. Phys. 139, 174107 (2013).
http://dx.doi.org/10.1063/1.4827055
31.
31.I. Fukuda, Y. Yonezawa, and H. Nakamura, J. Chem. Phys. 134, 164107 (2011).
http://dx.doi.org/10.1063/1.3582791
32.
32.I. Fukuda, N. Kamiya, Y. Yonezawa, and H. Nakamura, J. Chem. Phys. 137, 054314 (2012).
http://dx.doi.org/10.1063/1.4739789
33.
33.T. Arakawa, N. Kamiya, H. Nakamura, and I. Fukuda, PLoS One 8, e76606 (2013).
http://dx.doi.org/10.1371/journal.pone.0076606
34.
34.N. Kamiya, I. Fukuda, and H. Nakamura, Chem. Phys. Lett. 568-569, 26 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.03.014
35.
35.T. Mashimo, Y. Fukunishi, N. Kamiya, Y. Takano, I. Fukuda, and H. Nakamura, J. Chem. Theory Comput. 9, 5599 (2013).
http://dx.doi.org/10.1021/ct400342e
36.
36.Y. Nishikawa, T. Oyama, N. Kamiya, T. Kon, Y. Y. Toyoshima, H. Nakamura, and G. Kurisu, J. Mol. Biol. 426, 3232 (2014).
http://dx.doi.org/10.1016/j.jmb.2014.06.023
37.
37.K. Kasahara, I. Fukuda, and H. Nakamura, PLoS One 9, e112419 (2014).
http://dx.doi.org/10.1371/journal.pone.0112419
38.
38.J. Higo, B. Dasgupta, T. Mashimo, K. Kasahara, Y. Fukunishi, and H. Nakamura, J. Comput. Chem. 36, 1489 (2015).
http://dx.doi.org/10.1002/jcc.23948
39.
39.I. Fukuda, N. Kamiya, and H. Nakamura, J. Chem. Phys. 140, 194307 (2014).
http://dx.doi.org/10.1063/1.4875693
40.
40.P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature 360, 324 (1992).
http://dx.doi.org/10.1038/360324a0
41.
41.M. Matsumoto, S. Saito, and I. Ohmine, Nature 416, 409 (2002).
http://dx.doi.org/10.1038/416409a
42.
42.K. Mochizuki, M. Matsumoto, and I. Ohmine, Nature 498, 350 (2013).
http://dx.doi.org/10.1038/nature12190
43.
43.T. Yagasaki and S. Saito, Annu. Rev. Phys. Chem. 64, 55 (2013).
http://dx.doi.org/10.1146/annurev-physchem-040412-110150
44.
44.D. van der Spoel and P. J. van Maaren, J. Chem. Theory Comput. 2, 1 (2006).
http://dx.doi.org/10.1021/ct0502256
45.
45.S. E. Feller, R. W. Pastor, A. Rojnuckarin, S. Bogusz, and B. R. Brooks, J. Phys. Chem. 100, 17011 (1996).
http://dx.doi.org/10.1021/jp9614658
46.
46.D. van der Spoel, P. J. van Maaren, and H. J. C. Berendsen, J. Chem. Phys. 108, 10220 (1998).
http://dx.doi.org/10.1063/1.476482
47.
47.G. Mathias, B. Egwolf, M. Nonella, and P. Tavan, J. Chem. Phys. 118, 10847 (2003).
http://dx.doi.org/10.1063/1.1574774
48.
48.B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).
http://dx.doi.org/10.1021/ct700301q
49.
49.S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl, Bioinformatics 29, 845 (2013).
http://dx.doi.org/10.1093/bioinformatics/btt055
50.
50.W. Janke, Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms (NIC-Directors, 2002), Vol. 10, p. 423.
51.
51.W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).
http://dx.doi.org/10.1063/1.445869
52.
52.S. Nosé, Mol. Phys. 52, 255 (1984).
http://dx.doi.org/10.1080/00268978400101201
53.
53.W. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
54.
54.M. Parrinello and A. Rahman, Phys. Rev. Lett. 45, 1196 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.1196
55.
55.M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).
http://dx.doi.org/10.1063/1.328693
56.
56.P. J. Steinbach and B. R. Brooks, J. Comput. Chem. 15, 667 (1994).
http://dx.doi.org/10.1002/jcc.540150702
57.
57.A. Baumketner, J. Chem. Phys. 130, 104106 (2009).
http://dx.doi.org/10.1063/1.3081138
58.
58.H. Wang, F. Dommert, and C. Holm, J. Chem. Phys. 133, 034117 (2010).
http://dx.doi.org/10.1063/1.3446812
59.
59.A. Milchev, K. Binder, and D. W. Heermann, Z. Phys. B 63, 521 (1986).
http://dx.doi.org/10.1007/BF01726202
60.
60.A. Ferrenberg, D. P. Landau, and K. Binder, J. Stat. Phys. 63, 867 (1991).
http://dx.doi.org/10.1007/BF01029988
61.
61.See supplementary material at http://dx.doi.org/10.1063/1.4943956 for a further understanding.[Supplementary Material]
62.
62.M. A. González and J. L. F. Abascal, J. Chem. Phys. 132, 096101 (2010).
http://dx.doi.org/10.1063/1.3330544
63.
63.H. J. C. Berendsen, J. R. Grigera, and T. P. Stroatsma, J. Phys. Chem. 91, 6269 (1987).
http://dx.doi.org/10.1021/j100308a038
64.
64.Y. Wu, H. L. Tepper, and G. A. Voth, J. Chem. Phys. 124, 024503 (2006).
http://dx.doi.org/10.1063/1.2136877
65.
65.D. Braun, S. Boresch, and O. Steinhauser, J. Chem. Phys. 140, 064107 (2014).
http://dx.doi.org/10.1063/1.4864117
66.
66.G. S. Kell, J. Chem. Eng. Data 20, 97 (1975).
http://dx.doi.org/10.1021/je60064a005
67.
67.W. Wagner and A. Pruß, J. Phys. Chem. Ref. Data 31, 387 (2002).
http://dx.doi.org/10.1063/1.1461829
68.
68.A. V. Teplukhin, J. Struct. Chem. 54(Suppl. 2), 221232 (2013).
http://dx.doi.org/10.1134/S0022476613080040
69.
69.F. Corsetti, E. Artacho, J. M. Soler, S. S. Alexandre, and M. V. Fernandez-Serra, J. Chem. Phys. 139, 194502 (2013).
http://dx.doi.org/10.1063/1.4832141
70.
70.A. A. Aleksandrov, V. S. Okhotin, and Z. A. Ershova, Therm. Eng. 28, 249 (1981).
71.
71.K. R. Harris and P. J. Newitt, J. Chem. Eng. Data 42, 346 (1997).
http://dx.doi.org/10.1021/je9602935
72.
72.K. R. Harris and L. A. Woolf, J. Chem. Eng. Data 49, 1064 (2004).
http://dx.doi.org/10.1021/je049918m
73.
73.K. Bagchi, S. Balasubramanian, and M. L. Klein, J. Chem. Phys. 107, 8561 (1997).
http://dx.doi.org/10.1063/1.475162
74.
74.G. Guevara-Carrion, J. Vrabec, and H. Hasse, J. Chem. Phys. 134, 074508 (2011).
http://dx.doi.org/10.1063/1.3515262
75.
75.C. Vega and J. L. Abascal, Phys. Chem. Chem. Phys. 13, 19663 (2011).
http://dx.doi.org/10.1039/c1cp22168j
76.
76.P. Mark and L. Nilsson, J. Phys. Chem. A 105, 9954 (2001).
http://dx.doi.org/10.1021/jp003020w
77.
77.T. A. Pascal, D. Scharf, Y. Jung, and T. D. Kuhne, J. Chem. Phys. 137, 244507 (2012).
http://dx.doi.org/10.1063/1.4771974
78.
78.R. M. Venable, E. Hatcher, O. Guvench, A. D. MacKerell, Jr., and R. W. Pastor, J. Phys. Chem. B 114, 12501 (2010).
http://dx.doi.org/10.1021/jp105549s
79.
79.R. Fuentes-Azcatl, N. Mendoza, and J. Alejandre, Physica A 420, 116 (2015).
http://dx.doi.org/10.1016/j.physa.2014.10.072
80.
80.M. Neumann, Mol. Phys. 50, 841 (1983).
http://dx.doi.org/10.1080/00268978300102721
81.
81.M. Neumann and O. Steinhauser, Chem. Phys. Lett. 95, 417 (1983).
http://dx.doi.org/10.1016/0009-2614(83)80585-5
82.
82.R. Schulz, B. Lindner, L. Petridis, and J. C. Smith, J. Chem. Theory Comput. 5, 2798 (2009).
http://dx.doi.org/10.1021/ct900292r
83.
83.D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic Press, Inc, 2001).
84.
84.C. H. Bennett, J. Comput. Phys. 22, 245 (1976).
http://dx.doi.org/10.1016/0021-9991(76)90078-4
85.
85.H. Wang, L. D. Site, and P. Zhang, J. Chem. Phys. 135, 224506 (2011).
http://dx.doi.org/10.1063/1.3666848
86.
86.S. W. de Leeuw, J. W. Perram, and E. R. Smith, Ann. Rev. Phys. Chem. 37, 245 (1986).
http://dx.doi.org/10.1146/annurev.pc.37.100186.001333
87.
87.D. Alfe and M. J. Gillan, Phys. Rev. Lett. 81, 5161 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.5161
88.
88.J. L. Aragones, L. G. MacDowell, and C. Vega, J. Phys. Chem. A 115, 5745 (2011).
http://dx.doi.org/10.1021/jp105975c
89.
89.O. Gereben and L. Pusztai, Chem. Phys. Lett. 507, 80 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.02.064
90.
90.S. Izvekov, J. M. Swanson, and G. A. Voth, J. Phys. Chem. B 112, 4711 (2008).
http://dx.doi.org/10.1021/jp710339n
91.
91.D. Adams, Mol. Phys. 40, 1261 (1980).
http://dx.doi.org/10.1080/00268978000102261
92.
92.D. Adams and E. Adams, Mol. Phys. 42, 907 (1981).
http://dx.doi.org/10.1080/00268978100100701
93.
93.N. Karasawa and W. A. Goddard, Macromolecules 28, 6765 (1995).
http://dx.doi.org/10.1021/ma00124a010
94.
94.W. Xue, W. A. Schulze, and R. E. Newnham, J. Am. Ceram. Soc. 73, 1783 (1990).
http://dx.doi.org/10.1111/j.1151-2916.1990.tb09834.x
95.
95.Y. Xu, M. Yamazaki, and P. Villars, Jpn. J. Appl. Phys. 50, 11RH02 (2011).
http://dx.doi.org/10.7567/JJAP.50.11RH02
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/11/10.1063/1.4943956
Loading
/content/aip/journal/jcp/144/11/10.1063/1.4943956
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/11/10.1063/1.4943956
2016-03-21
2016-12-10

Abstract

We performed extensive and strict tests for the reliability of the zero-multipole (summation) method (ZMM), which is a method for estimating the electrostatic interactions among charged particles in a classical physical system, by investigating a set of various physical quantities. This set covers a broad range of water properties, including the thermodynamic properties(pressure, excess chemical potential, constant volume/pressure heat capacity, isothermal compressibility, and thermal expansion coefficient), dielectric properties(dielectric constant and Kirkwood-G factor), dynamical properties(diffusion constant and viscosity), and the structural property (radial distribution function). We selected a bulk water system, the most important solvent, and applied the widely used TIP3P model to this test. In result, the ZMM works well for almost all cases, compared with the smooth particle mesh Ewald (SPME) method that was carefully optimized. In particular, at cut-off radius of 1.2 nm, the recommended choices of ZMM parameters for the TIP3P system are ≤ 1 nm−1 for the splitting parameter and = 2 or = 3 for the order of the multipole moment. We discussed the origin of the deviations of the ZMM and found that they are intimately related to the deviations of the equilibrated densities between the ZMM and SPME, while the magnitude of the density deviations is very small.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/11/1.4943956.html;jsessionid=B1IpahI5NlI-Ht-50AvwN9yy.x-aip-live-02?itemId=/content/aip/journal/jcp/144/11/10.1063/1.4943956&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/11/10.1063/1.4943956&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/11/10.1063/1.4943956'
Right1,Right2,Right3,