Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/11/10.1063/1.4944067
1.
1.M. Petersheim and D. H. Turner, Biochemistry 22, 256 (1983).
http://dx.doi.org/10.1021/bi00271a004
2.
2.C. A. Hunter, J. Mol. Biol. 230, 1025 (1993).
http://dx.doi.org/10.1006/jmbi.1993.1217
3.
3.K. M. Guckian, B. A. Schweitzer, R. X.-F. Ren, C. J. Sheils, D. C. Tahmassebi, and E. T. Kool, J. Am. Chem. Soc. 122, 2213 (2000).
http://dx.doi.org/10.1021/ja9934854
4.
4.E. Protozanova, P. Yakovchuk, and M. D. Frank-Kamenetskii, J. Mol. Biol. 342, 775 (2004).
http://dx.doi.org/10.1016/j.jmb.2004.07.075
5.
5.P. Yakovchuk, E. Protozanova, and M. D. Frank-Kamenetskii, Nucleic Acids Res. 34, 564 (2006).
http://dx.doi.org/10.1093/nar/gkj454
6.
6.J. H. A. Nagel, A. P. Gultyaev, K. Gerdes, and C. W. A. Pleij, RNA 5, 1408 (1999).
http://dx.doi.org/10.1017/S1355838299990805
7.
7.K. Gerdes and E. G. H. Wagner, Curr. Opin. Microbiol. 10, 117 (2007).
http://dx.doi.org/10.1016/j.mib.2007.03.003
8.
8.D. Thirumalai and S. A. Woodson, Acc. Chem. Res. 29, 433 (1996).
http://dx.doi.org/10.1021/ar9500933
9.
9.C. Hyeon, R. I. Dima, and D. Thirumalai, Structure 14, 1633 (2006).
http://dx.doi.org/10.1016/j.str.2006.09.002
10.
10.P. C. Bevilacqua and J. M. Blose, Annu. Rev. Phys. Chem. 59, 79 (2008).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093743
11.
11.K. Sarkar, D. A. Nguyen, and M. Gruebele, RNA 16, 2427 (2010).
http://dx.doi.org/10.1261/rna.2253310
12.
12.J.-C. Lin and D. Thirumalai, J. Am. Chem. Soc. 135, 16641 (2013).
http://dx.doi.org/10.1021/ja408595e
13.
13.R. K. Nayak, O. B. Peersen, K. B. Hall, and A. Van Orden, J. Am. Chem. Soc. 134, 2453 (2012).
http://dx.doi.org/10.1021/ja208490w
14.
14.J. Chen and W. Zhang, J. Chem. Phys. 137, 225102 (2012).
http://dx.doi.org/10.1063/1.4769821
15.
15.S. Gong, Y. Wang, and W. Zhang, J. Chem. Phys. 142, 015103 (2015).
http://dx.doi.org/10.1063/1.4905214
16.
16.K. Snoussi and J.-L. Leroy, Biochemistry 40, 8898 (2001).
http://dx.doi.org/10.1021/bi010385d
17.
17.E. Folta-Stogniew and I. M. Russu, Biochemistry 33, 11016 (1994).
http://dx.doi.org/10.1021/bi00202a022
18.
18.C. Chen and I. M. Russu, Biophys. J. 87, 2545 (2004).
http://dx.doi.org/10.1529/biophysj.104.045179
19.
19.A. Krueger, E. Protozanova, and M. D. Frank-Kamenetskii, Biophys. J. 90, 3091 (2006).
http://dx.doi.org/10.1529/biophysj.105.078774
20.
20.H. S. Steinert, J. Rinnenthal, and H. Schwalbe, Biophys. J. 102, 2564 (2012).
http://dx.doi.org/10.1016/j.bpj.2012.03.074
21.
21.E. Giudice, P. Várnai, and R. Lavery, Nucleic Acids Res. 31, 1434 (2003).
http://dx.doi.org/10.1093/nar/gkg239
22.
22.Y. Pan and A. D. MacKerell, Nucleic Acids Res. 31, 7131 (2003).
http://dx.doi.org/10.1093/nar/gkg941
23.
23.F. Briki, J. Ramstein, R. Lavery, and D. Genest, J. Am. Chem. Soc. 113, 2490 (1991).
http://dx.doi.org/10.1021/ja00007a023
24.
24.J. Bernet, K. Zakrzewska, and R. Lavery, J. Mol. Struct.: THEOCHEM 398-399, 473 (1997).
http://dx.doi.org/10.1016/S0166-1280(96)04974-3
25.
25.P. Várnai, M. Canalia, and J.-L. Leroy, J. Am. Chem. Soc. 126, 14659 (2004).
http://dx.doi.org/10.1021/ja0470721
26.
26.M. F. Hagan, A. R. Dinner, D. Chandler, and A. K. Chakraborty, Proc. Natl. Acad. Sci. U. S. A. 100, 13922 (2003).
http://dx.doi.org/10.1073/pnas.2036378100
27.
27.F. Colizzi and G. Bussi, J. Am. Chem. Soc. 134, 5173 (2012).
http://dx.doi.org/10.1021/ja210531q
28.
28.N. K. Banavali and A. D. MacKerell, J. Mol. Biol. 319, 141 (2002).
http://dx.doi.org/10.1016/S0022-2836(02)00194-8
29.
29.P. Várnai and R. Lavery, J. Am. Chem. Soc. 124, 7272 (2002).
http://dx.doi.org/10.1021/ja025980x
30.
30.B. Onoa and I. Tinoco, Curr. Opin. Struct. Biol. 14, 374 (2004).
http://dx.doi.org/10.1016/j.sbi.2004.04.001
31.
31.T. Xia, J. SantaLucia, M. E. Burkard, R. Kierzek, S. J. Schroeder, X. Jiao, C. Cox, and D. H. Turner, Biochemistry 37, 14719 (1998).
http://dx.doi.org/10.1021/bi9809425
32.
32.B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).
http://dx.doi.org/10.1021/ct700301q
33.
33.J. Wang, P. Cieplak, and P. A. Kollman, J. Comput. Chem. 21, 1049 (2000).
http://dx.doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
34.
34.J. Wang and P. A. Kollman, J. Comput. Chem. 22, 1219 (2001).
http://dx.doi.org/10.1002/jcc.1079
35.
35.A. Pérez, I. Marchán, D. Svozil, J. Sponer, T. E. Cheatham III, C. A. Laughton, and M. Orozco, J. Biophys. 92, 3817 (2007).
http://dx.doi.org/10.1529/biophysj.106.097782
36.
36.M. Zgarbová, M. Otyepka, J. Sponer, A. Mládek, P. Banáš, T. E. Cheatham III, and P. Jurečka, J. Chem. Theory Comput. 7, 2886 (2011).
http://dx.doi.org/10.1021/ct200162x
37.
37.W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).
http://dx.doi.org/10.1063/1.445869
38.
38.M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112, 8910 (2000).
http://dx.doi.org/10.1063/1.481505
39.
39.G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007).
http://dx.doi.org/10.1063/1.2408420
40.
40.M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).
http://dx.doi.org/10.1063/1.328693
41.
41.T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).
http://dx.doi.org/10.1063/1.464397
42.
42.U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995).
http://dx.doi.org/10.1063/1.470117
43.
43.B. J. E. Lennard-Jones, Proc. Phys. Soc. 43, 461 (1931).
http://dx.doi.org/10.1088/0959-5309/43/5/301
44.
44.I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Sov. Phys. Usp. 73, 153 (1961).
http://dx.doi.org/10.1070/PU1961v004n02ABEH003330
45.
45.B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, J. Comput. Chem. 18, 1463 (1997).
http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
46.
46.S. Miyamoto and P. A. Kollman, J. Comput. Chem. 13, 952 (1992).
http://dx.doi.org/10.1002/jcc.540130805
47.
47.E. Hershkovitz, E. Tannenbaum, S. B. Howerton, A. Sheth, A. Tannenbaum, and L. D. Williams, Nucleic Acids Res. 31, 6249 (2003).
http://dx.doi.org/10.1093/nar/gkg835
48.
48.M. E. Craig, D. M. Crothers, and P. Doty, J. Mol. Biol. 62, 383 (1971).
http://dx.doi.org/10.1016/0022-2836(71)90434-7
49.
49.H. S. Chung and W. A. Eaton, Nature 502, 685 (2013).
http://dx.doi.org/10.1038/nature12649
50.
50.H. S. Chung, J. M. Louis, and W. A. Eaton, Proc. Natl. Acad. Sci. U. S. A. 106, 11837 (2009).
http://dx.doi.org/10.1073/pnas.0901178106
51.
51.G. Hummer, J. Chem. Phys. 120, 516 (2004).
http://dx.doi.org/10.1063/1.1630572
52.
52.P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).
http://dx.doi.org/10.1103/RevModPhys.62.251
53.
53.B. J. Berne, M. Borkovec, and J. E. Straub, J. Phys. Chem. 92, 3711 (1988).
http://dx.doi.org/10.1021/j100324a007
54.
54.J. D. Bryngelson and P. G. Wolynes, J. Phys. Chem. 93, 6902 (1989).
http://dx.doi.org/10.1021/j100356a007
55.
55.Y. Zhang, J. Zhang, and W. Wang, J. Am. Chem. Soc. 133, 6882 (2011).
http://dx.doi.org/10.1021/ja1109425
56.
56.S. S. Cho, D. L. Pincus, and D. Thirumalai, Proc. Natl. Acad. Sci. U. S. A. 106, 17349 (2009).
http://dx.doi.org/10.1073/pnas.0906625106
57.
57.Z.-J. Tan and S.-J. Chen, Biophys. J. 92, 3615 (2007).
http://dx.doi.org/10.1529/biophysj.106.100388
58.
58.A. A. Chen, M. Marucho, N. A. Baker, and R. V. Pappu, Methods Enzymol. 469, 411 (2009).
http://dx.doi.org/10.1016/s0076-6879(09)69020-0
59.
59.Y.-Y. Wu, Z.-L. Zhang, J.-S. Zhang, X.-L. Zhu, and Z.-J. Tan, Nucleic Acids Res. 43, 6156 (2015).
http://dx.doi.org/10.1093/nar/gkv570
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/11/10.1063/1.4944067
Loading
/content/aip/journal/jcp/144/11/10.1063/1.4944067
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/11/10.1063/1.4944067
2016-03-21
2016-09-24

Abstract

The thermodynamic and kinetic parameters of an RNA base pair were obtained through a long-time molecular dynamics simulation of the opening-closing switch process of the base pair near its melting temperature. The thermodynamic parameters were in good agreement with the nearest-neighbor model. The opening rates showed strong temperature dependence, however, the closing rates showed only weak temperature dependence. The transition path time was weakly temperature dependent and was insensitive to the energy barrier. The diffusion constant exhibited super-Arrhenius behavior. The free energy barrier of breaking a single base stack results from the enthalpy increase, ΔH, caused by the disruption of hydrogen bonding and base-stacking interactions. The free energy barrier of base pair closing comes from the unfavorable entropy loss, ΔS, caused by the restriction of torsional angles. These results suggest that a one-dimensional free energysurface is sufficient to accurately describe the dynamics of base pair opening and closing, and the dynamics are Brownian.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/11/1.4944067.html;jsessionid=aGyr4uffC9rzYNpofGMueuRA.x-aip-live-06?itemId=/content/aip/journal/jcp/144/11/10.1063/1.4944067&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/11/10.1063/1.4944067&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/11/10.1063/1.4944067'
Right1,Right2,Right3,