Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.D. Kashchiev, J. Chem. Phys. 125(4), 044505 (2006).
2.S. Penner, J. Phys. Chem. 56(4), 475479 (1952).
3.P. Rahimi and C. A. Ward, Int. J. Thermodyn. 8(1), 114 (2005).
4.Y. Sone and H. Sugimoto, Phys. Fluids A 5(6), 14911511 (1993).
5.I. Eames, N. Marr, and H. Sabir, Int. J. Heat Mass Transfer 40(12), 29632973 (1997).
6.J. R. Maa, Ind. Eng. Chem. Fundam. 6(4), 504518 (1967).
7.N. Musolino and B. L. Trout, J. Chem. Phys. 138(13), 134707 (2013).
8.J. D. Smith, C. D. Cappa, W. S. Drisdell, R. C. Cohen, and R. J. Saykally, J. Am. Chem. Soc. 128(39), 1289212898 (2006).
9.P. Davidovits, D. Worsnop, J. Jayne, C. Kolb, P. Winkler, A. Vrtala, P. Wagner, M. Kulmala, K. Lehtinen, and T. Vesala, Geophys. Res. Lett. 31(22), L22111, doi:10.1029/2004GL020835 (2004).
10.J. Vieceli, M. Roeselová, and D. J. Tobias, Chem. Phys. Lett. 393(1), 249255 (2004).
11.P. Varilly and D. Chandler, J. Phys. Chem. B 117(5), 14191428 (2013).
12.T. Tsuruta and G. Nagayama, J. Phys. Chem. B 108(5), 17361743 (2004).
13.C. Caleman and D. van der Spoel, J. Chem. Phys. 125(15), 154508 (2006).
14.J. Julin, M. Shiraiwa, R. E. Miles, J. P. Reid, U. Pöschl, and I. Riipinen, J. Phys. Chem. A 117(2), 410420 (2013).
15.J. A. Sellberg, C. Huang, T. McQueen, N. Loh, H. Laksmono, D. Schlesinger, R. Sierra, D. Nordlund, C. Hampton, D. Starodub, D. DePonte, M. Beye, C. Chen, A. Martin, A. Barty, K. Wikfeldt, T. Weiss, C. Caronna, J. Feldkamp, L. Skinner, M. Seibert, M. Messerschmidt, G. Williams, S. Boutet, L. Pettersson, M. Bogan, and A. Nilsson, Nature 510(7505), 381384 (2014).
16.H. Laksmono, T. A. McQueen, J. A. Sellberg, N. D. Loh, C. Huang, D. Schlesinger, R. G. Sierra, C. Y. Hampton, D. Nordlund, M. Beye, A. V. Martin, A. Barty, M. M. Seibert, M. Messerschmidt, G. J. Williams, S. Boutet, K. Amann-Winkel, T. Loerting, L. G. M. Pettersson, M. J. Bogan, and A. Nilsson, J. Phys. Chem. Lett. 6, 28262832 (2015).
17.J. L. Abascal and C. Vega, J. Chem. Phys. 123(23), 234505 (2005).
18.S. S. Sazhin, Prog. Energy Combust. Sci. 32(2), 162214 (2006).
19.J. A. Sellberg, T. A. McQueen, H. Laksmono, S. Schreck, M. Beye, D. P. DePonte, B. Kennedy, D. Nordlund, R. G. Sierra, D. Schlesinger, T. Tokushima, I. Zhovtobriukh, S. Eckert, V. H. Segtnan, H. Ogasawara, K. Kubicek, S. Techert, U. Bergmann, G. L. Dakovski, W. F. Schlotter, Y. Harada, M. J. Bogan, P. Wernet, A. Föhlisch, L. G. M. Pettersson, and A. Nilsson, J. Chem. Phys. 142(4), 044505 (2015).
20.B. J. Murray, D. O’Sullivan, J. D. Atkinson, and M. E. Webb, Chem. Soc. Rev. 41, 65196554 (2012).
21.M. Faubel, S. Schlemmer, and J. Toennies, Z. Phys. D 10(2-3), 269277 (1988).
22.M. Knudsen, Ann. Phys. 352(13), 697708 (1915).
23.C. Vega and E. De Miguel, J. Chem. Phys. 126(15), 154707 (2007).
24.R. C. Tolman, J. Chem. Phys. 17(3), 333337 (1949).
25.M. H. Factorovich, V. Molinero, and D. A. Scherlis, J. Am. Chem. Soc. 136(12), 45084514 (2014).
26.C. Vega, J. Abascal, and I. Nezbeda, J. Chem. Phys. 125(3), 034503 (2006).
27.D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. Berendsen, J. Comp. Chem. 26(16), 17011718 (2005).
28.A. P. Willard and D. Chandler, J. Phys. Chem. B 114(5), 19541958 (2010).
29.R. García Fernández, J. L. F. Abascal, and C. Vega, J. Chem. Phys. 124, 144506 (2006).

Data & Media loading...


Article metrics loading...



In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd