Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/12/10.1063/1.4944744
1.
1.M. Born and R. Oppenheimer, Ann. Phys. 389, 457 (1927);
http://dx.doi.org/10.1002/andp.19273892002
1.M. Born and R. Oppenheimer, Ann. Phys. IV 84, 457 (1927).
http://dx.doi.org/10.1002/andp.19273892002
2.
2.H. Köppel, W. Domcke, and L. S. Cederbaum, Adv. Chem. Phys. 57, 59 (1984).
http://dx.doi.org/10.1002/9780470142813.ch2
3.
3.D. R. Yarkony, J. Phys. Chem. A 105, 6277 (2001).
http://dx.doi.org/10.1021/jp003731u
4.
4.H. Nakamura and D. G. Truhlar, J. Chem. Phys. 115, 10353 (2001).
http://dx.doi.org/10.1063/1.1412879
5.
5.M. Baer, Phys. Rep. 358, 75 (2002).
http://dx.doi.org/10.1016/S0370-1573(01)00052-7
6.
6.C. A. Mead and D. G. Truhlar, J. Chem. Phys. 77, 6090 (1982).
http://dx.doi.org/10.1063/1.443853
7.
7.P. E. S. Wormer, J. A. Kłos, G. C. Groenenboom, and A. van der Avoird, J. Chem. Phys. 122, 244325 (2005).
http://dx.doi.org/10.1063/1.1949198
8.
8.Q. Ma, J. A. Kłos, M. H. Alexander, A. van der Avoird, and P. J. Dagdigian, J. Chem. Phys. 141, 174309 (2014).
http://dx.doi.org/10.1063/1.4900478
9.
9.C. E. Hoyer, X. Xu, D. Ma, L. Gagliardi, and D. G. Truhlar, J. Chem. Phys. 141, 114104 (2014).
http://dx.doi.org/10.1063/1.4894472
10.
10.A. J. Dobbyn and P. J. Knowles, Mol. Phys. 91, 1107 (1997).
http://dx.doi.org/10.1080/002689797170842
11.
11.I. C. McDade and E. J. Llewellyn, Can. J. Phys. 64, 1626 (1986).
http://dx.doi.org/10.1139/p86-287
12.
12.M. R. Torr and D. G. Torr, Rev. Geophys. Space Phys. 20, 91, doi:10.1029/RG020i001p00091 (1982).
http://dx.doi.org/10.1029/RG020i001p00091
13.
13.C. Frankenberg, R. Pollock, R. A. M. Lee, J. Rosenberg-Blavier, D. Crisp, C. W. O’Dell, G. B. Osterman, C. Roehl, P. O. Wennberg, and D. Wunch, Atmos. Meas. Tech. Discuss. 7, 7641 (2014).
http://dx.doi.org/10.5194/amtd-7-7641-2014
14.
14.L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, Encyclopedia of Mathematics (Addison-Wesley, Reading, 1981), Vol. 8.
15.
15.molpro is a package of ab initio programs written by H.-J. Werner and P. J. Knowles, with contributions from R. D. Amos, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, T. Leininger, R. Lindh, A. W. Lloyd, W. Meyer, M. E. Mura, A. Nicklaß, P. Palmieri, K. Peterson, R. Pitzer, P. Pulay, G. Rauhut, M. Schütz, H. Stoll, A. J. Stone, and T. Thorsteinsson.
16.
16.See supplementary material at http://dx.doi.org/10.1063/1.4944744 for multiple-property-based diabatization for open-shell van der Waals molecules.[Supplementary Material]
17.
17.T. Karman, A. van der Avoird, and G. C. Groenenboom, “Diabatic potential energy surfaces for the low-lying states of O2–O2” (unpublished).
18.
18.H. Massey, Contemp. Phys. 13, 375 (1972).
http://dx.doi.org/10.1080/00107517208205689
19.
19.A. Semenov and D. Babikov, J. Phys. Chem. Lett. 5, 275 (2014).
http://dx.doi.org/10.1021/jz402542w
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/12/10.1063/1.4944744
Loading
/content/aip/journal/jcp/144/12/10.1063/1.4944744
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/12/10.1063/1.4944744
2016-03-24
2016-12-04

Abstract

We derive a new multiple-property-based diabatization algorithm. The transformation between adiabatic and diabatic representations is determined by requiring a set of properties in both representations to be related by a similarity transformation. This set of properties is determined in the adiabatic representation by rigorous electronic structure calculations. In the diabatic representation, the same properties are determined using model diabatic states defined as products of undistorted monomerwave functions. This diabatic model is generally applicable to van der Waals molecules in arbitrary electronic states. Application to locating seams of conical intersections and collisional transfer of electronic excitation energy is demonstrated for O − O in low-lying excited states. Property-based diabatization for this test system included all components of the electric quadrupole tensor, orbital angular momentum, and spin-orbit coupling.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/12/1.4944744.html;jsessionid=AfwohM1i-W-AqtooEMZitrNZ.x-aip-live-02?itemId=/content/aip/journal/jcp/144/12/10.1063/1.4944744&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/12/10.1063/1.4944744&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/12/10.1063/1.4944744'
Right1,Right2,Right3,