Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/12/10.1063/1.4945342
1.
1.B. E. Conway, Ionic Hydration in Chemistry and Biophysics (Elsevier Scientific Publishing Company, Amsterdam, 1981).
2.
2.Y. Marcus, Ion Solvation (Wiley, New York, 1985).
3.
3.J. Burgess, Ions in Solution: Basic Principles of Chemical Interactions (Ellis Horwood, New York, 1988).
4.
4.R. S. Eisenberg, Physiology 28, 28 (2013).
http://dx.doi.org/10.1152/physiol.00041.2012
5.
5.M. Eigen and K. Z. Tamm, Elektrochemische 66, 93 (1962).
6.
6.Y. Marcus and G. Hefter, Chem. Rev. 106, 4585 (2006).
http://dx.doi.org/10.1021/cr040087x
7.
7.A. Gutberlet, G. Schwaab, Ö Birer, M. Masia, A. Kaczmarek, H. Forbert, M. Havenith, and D. Marx, Science 324, 1545 (2009).
http://dx.doi.org/10.1126/science.1171753
8.
8.D. Skvortsov, S. J. Lee, M. Y. Choi, and A. F. Vilesov, J. Phys. Chem. A 113, 7360 (2009).
http://dx.doi.org/10.1021/jp811497c
9.
9.S. D. Flynn, D. Skvortsov, A. M. Morrison, T. Liang, M. Y. Choi, G. E. Douberly, and A. F. Vilesov, J. Phys. Chem. Lett. 1, 2233 (2010).
http://dx.doi.org/10.1021/jz100637m
10.
10.A. M. Morrison, S. D. Flynn, T. Liang, and G. E. Douberly, J. Phys. Chem. A 114, 8090 (2010).
http://dx.doi.org/10.1021/jp104545j
11.
11.M. Letzner, S. Gruen, D. Habig, K. Hanke, T. Endres, P. Nieto, G. Schwaab, L. Walewski, M. Wollenhaupt, H. Forbert, D. Marx, and M. Havenith, J. Chem. Phys. 139, 154304 (2013).
http://dx.doi.org/10.1063/1.4824858
12.
12.D. E. Woon and T. H. Dunning, Jr., J. Am. Chem. Soc. 117, 1090 (1995).
http://dx.doi.org/10.1021/ja00108a027
13.
13.C. P. Peterson and M. S. Gordon, J. Phys. Chem. A 103, 4162 (1999).
http://dx.doi.org/10.1021/jp984806l
14.
14.P. Jungwirth, J. Phys. Chem. A 104, 145 (2000).
http://dx.doi.org/10.1021/jp993010z
15.
15.A. C. Olleta, H. M. Lee, and K. S. Kim, J. Chem. Phys. 124, 024321 (2006).
http://dx.doi.org/10.1063/1.2147283
16.
16.C.–K. Siu, B. S. Fox-Beyer, M. K. Beyer, and V. E. Bondybey, Chem. - Eur J. 12, 6382 (2006).
http://dx.doi.org/10.1002/chem.200501569
17.
17.M. K. Ghosh, S. Re, M. Feig, Y. Sugita, and C. H. Choi, J. Phys. Chem. B 117, 289 (2013).
http://dx.doi.org/10.1021/jp308731z
18.
18.B. S. Ault, J. Am. Chem. Soc. 100, 2426 (1978).
http://dx.doi.org/10.1021/ja00476a027
19.
19.A. Mizoguchi, Y. Ohshima, and Y. Endo, J. Am. Chem. Soc. 125, 1716 (2003).
http://dx.doi.org/10.1021/ja028522x
20.
20.A. Mizoguchi, Y. Ohshima, and Y. Endo, J. Chem. Phys. 135, 064307 (2011).
http://dx.doi.org/10.1063/1.3616047
21.
21.J. P. Toennies and A. F. Vilesov, Angew. Chem., Int. Ed. 43, 2622 (2004).
http://dx.doi.org/10.1002/anie.200300611
22.
22.R. C. Miller and P. Kusch, J. Chem. Phys. 25, 860 (1956).
http://dx.doi.org/10.1063/1.1743134
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4945342 for more details about the experimental methodology and calculations.[Supplementary Material]
24.
24.P. Ayotte, G. W. Weddle, J. Kim, and M. A. Johnson, J. Am. Chem. Soc. 120, 12361 (1998).
http://dx.doi.org/10.1021/ja981979f
25.
25.S. A. Corcelli, J. A. Kelley, J. C. Tully, and M. A. Johnson, J. Phys. Chem. A 106, 4872 (2002).
http://dx.doi.org/10.1021/jp013956k
26.
26.M. E. Jacox, Chem. Soc. Rev. 31, 108 (2002).
http://dx.doi.org/10.1039/b102907j
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/12/10.1063/1.4945342
Loading
/content/aip/journal/jcp/144/12/10.1063/1.4945342
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/12/10.1063/1.4945342
2016-03-30
2016-12-05

Abstract

To explore how the ion-pair in a single salt molecule evolves with the addition of water, infrared (IR) spectra of complexes composed of NaCl and multiple water molecules have been recorded for the first time. The NaCl(HO) complexes were formed and probed in liquid helium nanodroplets, and IR spectra were recorded for = 1 → 4. The spectra for = 1, 2, and 3 are consistent with formation of the lowest energy contact-ion pair structures in which each water molecule forms a single ionic hydrogen bond to an intact Na+Cl ion-pair. Alternative structures with hydrogen bonding between water molecules become energetically competitive for = 4, and the IR spectrum indicates likely the coexistence of at least two isomers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/12/1.4945342.html;jsessionid=DOAhyYcMacEPHn-NPRQibrZ1.x-aip-live-03?itemId=/content/aip/journal/jcp/144/12/10.1063/1.4945342&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/12/10.1063/1.4945342&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/12/10.1063/1.4945342'
Right1,Right2,Right3,