Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/13/10.1063/1.4944633
1.
1.K. Laasonen, M. Sprik, M. Parrinello, and R. Car, J. Chem. Phys. 99, 9081 (1993).
http://dx.doi.org/10.1063/1.465574
2.
2.M. E. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello, J. Phys.: Condens. Matter 6, A93 (1994).
http://dx.doi.org/10.1088/0953-8984/6/23A/010
3.
3.M. Sprik, J. Hutter, and M. Parrinello, J. Chem. Phys. 105, 1142 (1996).
http://dx.doi.org/10.1063/1.471957
4.
4.P. L. Silvestrelli, M. Bernasconi, and M. Parrinello, Chem. Phys. Lett. 277, 478 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)00930-5
5.
5.P. L. Silvestrelli and M. Parrinello, J. Chem. Phys. 111, 3572 (1999).
http://dx.doi.org/10.1063/1.479638
6.
6.J. D. Bernal and R. H. Fowler, J. Chem. Phys. 1, 515 (1933).
http://dx.doi.org/10.1063/1.1749327
7.
7.J. S. Rowlinson, Trans. Faraday Soc. 47, 120 (1951).
http://dx.doi.org/10.1039/tf9514700120
8.
8.J. A. Barker and R. O. Watts, Chem. Phys. Lett. 3, 144 (1969).
http://dx.doi.org/10.1016/0009-2614(69)80119-3
9.
9.A. Rahman and F. H. Stillinger, J. Chem. Phys. 55, 3336 (1971).
http://dx.doi.org/10.1063/1.1676585
10.
10.H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans, “Interaction models for water in relation to protein hydration,” in Intermolecular Forces, edited byB. Pullman, Jerusalem Symposia on Quantum Chemistry and Biochemistry (Reidel, 1981), Vol. 14, p. 331.
11.
11.W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).
http://dx.doi.org/10.1063/1.445869
12.
12.B. Guillot, J. Mol. Liq. 101, 219 (2002).
http://dx.doi.org/10.1016/S0167-7322(02)00094-6
13.
13.J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005).
http://dx.doi.org/10.1063/1.2121687
14.
14.C. A. Coulson and D. Eisenberg, Proc. R. Soc. A 291, 445 (1966).
http://dx.doi.org/10.1098/rspa.1966.0105
15.
15.E. R. Batista, S. S. Xantheas, and H. Jónsson, J. Chem. Phys. 109, 4546 (1998).
http://dx.doi.org/10.1063/1.477058
16.
16.P. L. Silvestrelli and M. Parrinello, Phys. Rev. Lett. 82, 3308 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3308
17.
17.Y. S. Badyal et al., J. Chem. Phys. 112, 9206 (2000).
http://dx.doi.org/10.1063/1.481541
18.
18.L. X. Dang and T.-M. Chang, J. Chem. Phys. 106, 8149 (1997).
http://dx.doi.org/10.1063/1.473820
19.
19.C. J. Burnham and S. S. Xantheas, J. Chem. Phys. 116, 5115 (2002).
http://dx.doi.org/10.1063/1.1447904
20.
20.P. Ren and J. W. Ponder, J. Phys. Chem. B 107, 5933 (2003).
http://dx.doi.org/10.1021/jp027815+
21.
21.S. Habershon and D. E. Manolopoulos, Phys. Chem. Chem. Phys. 13, 19714 (2011).
http://dx.doi.org/10.1039/c1cp21520e
22.
22.K. T. Wikfeldt, E. R. Batista, F. D. Vila, and H. Jónsson, Phys. Chem. Chem. Phys. 15, 16542 (2013).
http://dx.doi.org/10.1039/c3cp52097h
23.
23.E. D. Isaacs, A. Shukla, P. M. Platzman, D. R. Hamann, B. Barbielini, and C. A. Tulk, Phys. Rev. Lett. 82, 600 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.600
24.
24.A. Nilsson, H. Ogasawara, M. Cavalleri, D. Nordlund, M. Nyberg, Ph. Wernet, and L. G. M. Pettersson, J. Chem. Phys. 122, 154505 (2005).
http://dx.doi.org/10.1063/1.1879752
25.
25.E. D. Glendening, J. Phys. Chem. A 109, 11936 (2005).
http://dx.doi.org/10.1021/jp058209s
26.
26.E. A. Cobar, P. R. Horn, R. G. Bergman, and M. Head-Gordon, Phys. Chem. Chem. Phys. 14, 15328 (2012).
http://dx.doi.org/10.1039/c2cp42522j
27.
27.G. S. Fanourgakis and S. S. Xantheas, J. Chem. Phys. 128, 074506 (2008).
http://dx.doi.org/10.1063/1.2837299
28.
28.V. Babin, G. R. Medders, and F. Paesani, J. Phys. Chem. Lett. 3, 3765 (2012).
http://dx.doi.org/10.1021/jz3017733
29.
29.C. Vega, J. L. F. Abascal, M. M. Conde, and J. L. Aragones, Faraday Discuss. 141, 251 (2009).
http://dx.doi.org/10.1039/B805531A
30.
30.C. Vega and J. L. F. Abascal, Phys. Chem. Chem. Phys. 13, 19663 (2011).
http://dx.doi.org/10.1039/c1cp22168j
31.
31.M. Sharma, R. Resta, and R. Car, Phys. Rev. Lett. 95, 187401 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.187401
32.
32.C. Zhang, D. Donadio, F. Gygi, and G. Galli, J. Chem. Theory Comput. 7, 1443 (2011).
http://dx.doi.org/10.1021/ct2000952
33.
33.M. Sharma, R. Resta, and R. Car, Phys. Rev. Lett. 98, 247401 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.247401
34.
34.M. Krack, A. Gambirasio, and M. Parrinello, J. Chem. Phys. 117, 9409 (2002).
http://dx.doi.org/10.1063/1.1517040
35.
35.S. M. Kathmann, I. F. W. Kuo, C. J. Mundy, and G. K. Schenter, J. Phys. Chem. B 115, 4369 (2011).
http://dx.doi.org/10.1021/jp1116036
36.
36.K. Laasonen and M. L. Klein, J. Am. Chem. Soc. 116, 11620 (1994).
http://dx.doi.org/10.1021/ja00104a073
37.
37.M. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello, J. Phys. Chem. 99, 5749 (1995).
http://dx.doi.org/10.1021/j100016a003
38.
38.M. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello, J. Chem. Phys. 103, 150 (1995).
http://dx.doi.org/10.1063/1.469654
39.
39.J. A. White, E. Schwegler, G. Galli, and F. Gygi, J. Chem. Phys. 113, 4668 (2000).
http://dx.doi.org/10.1063/1.1288688
40.
40.M. M. Naor, K. Van Nostrand, and C. Dellago, Chem. Phys. Lett. 369, 159 (2003).
http://dx.doi.org/10.1016/S0009-2614(02)01998-X
41.
41.R. Iftimie and M. E. Tuckerman, Angew. Chem., Int. Ed. 45, 1144 (2006).
http://dx.doi.org/10.1002/anie.200502259
42.
42.R. Iftimie, V. Thomas, S. Plessis, P. Marchand, and P. Ayotte, J. Am. Chem. Soc. 130, 5901 (2008).
http://dx.doi.org/10.1021/ja077846o
43.
43.D. Marx, ChemPhysChem 7, 1848 (2006).
http://dx.doi.org/10.1002/cphc.200600128
44.
44.D. Marx, A. Chandra, and M. E. Tuckerman, Chem. Rev. 110, 2174 (2010).
http://dx.doi.org/10.1021/cr900233f
45.
45.A. Hassanali, F. Giberti, J. Cuny, T. D. Kühne, and M. Parrinello, Proc. Natl. Acad. Sci. U. S. A. 110, 13723 (2013).
http://dx.doi.org/10.1073/pnas.1306642110
46.
46.A. A. Hassanali, J. Cuny, V. Verdolino, and M. Parrinello, Philos. Trans. R. Soc., A 372, 20120482 (2014).
http://dx.doi.org/10.1098/rsta.2012.0482
47.
47.F. X. Coudert, R. Vuilleumier, and A. Boutin, ChemPhysChem 7, 2464 (2006).
http://dx.doi.org/10.1002/cphc.200600561
48.
48.G. Cicero, J. C. Grossman, E. Schwegler, F. Gygi, and G. Galli, J. Am. Chem. Soc. 130, 1871 (2008).
http://dx.doi.org/10.1021/ja074418+
49.
49.D. Muñoz Santiburcio, C. Wittekindt, and D. Marx, Nat. Commun. 4, 2349 (2013).
http://dx.doi.org/10.1038/ncomms3349
50.
50.P. J. D. Lindan, N. M. Harrison, and M. J. Gillan, Phys. Rev. Lett. 80, 762 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.762
51.
51.J. Carrasco, B. Santra, J. Klimeš, and A. Michaelides, Phys. Rev. Lett. 106, 026101 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.026101
52.
52.J. Carrasco, A. Hodgson, and A. Michaelides, Nat. Mater. 11, 667 (2012).
http://dx.doi.org/10.1038/nmat3354
53.
53.M. Sulpizi, M. P. Gaigeot, and M. Sprik, J. Chem. Theory Comput. 8, 1037 (2012).
http://dx.doi.org/10.1021/ct2007154
54.
54.J. Cheng and M. Sprik, J. Chem. Theory Comput. 6, 880 (2010).
http://dx.doi.org/10.1021/ct100013q
55.
55.J. Wang, L. S. Pedroza, A. Poissier, and M. V. Fernández-Serra, J. Phys. Chem. C 116, 14382 (2012).
http://dx.doi.org/10.1021/jp302793s
56.
56.B. C. Wood, E. Schwegler, W. I. Choi, and T. Ogitsu, J. Am. Chem. Soc. 135, 15774 (2013).
http://dx.doi.org/10.1021/ja403850s
57.
57.L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935).
http://dx.doi.org/10.1021/ja01315a102
58.
58.F. H. Stillinger, Science 209, 451 (1980).
http://dx.doi.org/10.1126/science.209.4455.451
59.
59.G. A. Jeffrey, An Introduction to Hydrogen Bonding (Oxford University Press, New York, 1997).
60.
60.F. Sim, A. Stamant, I. Papai, and D. R. Salahub, J. Am. Chem. Soc. 114, 4391 (1992).
http://dx.doi.org/10.1021/ja00037a055
61.
61.K. Laasonen, F. Csajka, and M. Parrinello, Chem. Phys. Lett. 194, 172 (1992).
http://dx.doi.org/10.1016/0009-2614(92)85529-J
62.
62.K. Laasonen, M. Parrinello, R. Car, C. Y. Lee, and D. Vanderbilt, Chem. Phys. Lett. 207, 208 (1993).
http://dx.doi.org/10.1016/0009-2614(93)87016-V
63.
63.B. Santra, A. Michaelides, and M. Scheffler, J. Chem. Phys. 127, 184104 (2007).
http://dx.doi.org/10.1063/1.2790009
64.
64.D. R. Hamann, Phys. Rev. B 55, R10157 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.R10157
65.
65.P. J. Feibelman, Phys. Chem. Chem. Phys. 10, 4688 (2008).
http://dx.doi.org/10.1039/b808482n
66.
66.A. Michaelides, Appl. Phys. A: Mater. Sci. Process. 85, 415 (2006).
http://dx.doi.org/10.1007/s00339-006-3695-9
67.
67.E. Skulason et al., Phys. Chem. Chem. Phys. 9, 3241 (2007).
http://dx.doi.org/10.1039/B700099E
68.
68.D. Asthagiri, L. R. Pratt, and J. D. Kress, Phys. Rev. E 68, 041505 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.041505
69.
69.J. C. Grossman, E. Schwegler, E. W. Draeger, F. Gygi, and G. Galli, J. Chem. Phys. 120, 300 (2004).
http://dx.doi.org/10.1063/1.1630560
70.
70.E. Schwegler, J. C. Grossman, F. Gygi, and G. Galli, J. Chem. Phys. 121, 5400 (2004).
http://dx.doi.org/10.1063/1.1782074
71.
71.M. V. Fernández-Serra and E. Artacho, J. Chem. Phys. 121, 11136 (2004).
http://dx.doi.org/10.1063/1.1813431
72.
72.P. H. L. Sit and N. Marzari, J. Chem. Phys. 122, 204510 (2005).
http://dx.doi.org/10.1063/1.1908913
73.
73.I. F. W. Kuo et al., J. Phys. Chem. B 108, 12990 (2004).
http://dx.doi.org/10.1021/jp047788i
74.
74.J. VandeVondele et al., J. Chem. Phys. 122, 014515 (2005).
http://dx.doi.org/10.1063/1.1828433
75.
75.B. Santra et al., J. Chem. Phys. 129, 194111 (2008).
http://dx.doi.org/10.1063/1.3012573
76.
76.G. C. Shields and K. N. Kirschner, Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 38, 32 (2008).
http://dx.doi.org/10.1080/15533170701853918
77.
77.E. E. Dahlke, R. M. Olson, H. R. Leverentz, and D. G. Truhlar, J. Phys. Chem. A 112, 3976 (2008).
http://dx.doi.org/10.1021/jp077376k
78.
78.B. Santra et al., Phys. Rev. Lett. 107, 185701 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.185701
79.
79.E. Arunan et al., Pure Appl. Chem. 83, 1637 (2011).
http://dx.doi.org/10.1351/pac-rec-10-01-02
80.
80.T. K. Ghanty, V. N. Staroverov, P. R. Koren, and E. R. Davidson, J. Am. Chem. Soc. 122, 1210 (2000).
http://dx.doi.org/10.1021/ja9937019
81.
81.A. H. Romero, P. L. Silvistrelli, and M. Parrinello, J. Chem. Phys. 115, 115 (2001).
http://dx.doi.org/10.1063/1.1372183
82.
82.A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
83.
83.C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
84.
84.J. P. Perdew, Phys. Rev. B 33, 8822 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.8822
85.
85.A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
86.
86.P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
http://dx.doi.org/10.1021/j100096a001
87.
87.J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).
http://dx.doi.org/10.1063/1.472933
88.
88.C. Adamo, M. Cossi, G. Scalmani, and V. Barone, Chem. Phys. Lett. 307, 265 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00515-1
89.
89.P. Calaminici, K. Jug, and A. M. Koster, J. Chem. Phys. 109, 7756 (1998).
http://dx.doi.org/10.1063/1.477421
90.
90.P. A. Fantin, P. L. Barbieri, A. C. Neto, and F. E. Jorge, J. Mol. Struct.: THEOCHEM 810, 103 (2007).
http://dx.doi.org/10.1016/j.theochem.2007.02.003
91.
91.A. J. Cohen and Y. Tantirungrotechai, Chem. Phys. Lett. 299, 465 (1999).
http://dx.doi.org/10.1016/S0009-2614(98)01317-7
92.
92.S. A. C. McDowell, R. D. Amos, and N. C. Handy, Chem. Phys. Lett. 235, 1 (1995).
http://dx.doi.org/10.1016/0009-2614(95)00076-G
93.
93.D. J. Tozer and N. C. Handy, J. Chem. Phys. 109, 10180 (1998).
http://dx.doi.org/10.1063/1.477711
94.
94.D. J. Tozer and N. C. Handy, J. Chem. Phys. 108, 2545 (1998).
http://dx.doi.org/10.1063/1.475638
95.
95.C. Van Caillie and R. D. Amos, Chem. Phys. Lett. 328, 446 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00942-8
96.
96.J. R. Hammond, N. Govind, K. Kowalski, J. Autschbach, and S. S. Xantheas, J. Chem. Phys. 131, 214103 (2009).
http://dx.doi.org/10.1063/1.3263604
97.
97.B. Santra, A. Michaelides, and M. Scheffler, J. Chem. Phys. 131, 124509 (2009).
http://dx.doi.org/10.1063/1.3236840
98.
98.T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Electronic Structure Theory (Wiley, New York, 2000).
99.
99.X. Xu and W. A. Goddard, J. Phys. Chem. A 108, 2305 (2004).
http://dx.doi.org/10.1021/jp035869t
100.
100.C. Zhang, L. Spanu, and G. Galli, J. Phys. Chem. B 115, 14190 (2011).
http://dx.doi.org/10.1021/jp204981y
101.
101.M. J. Gillan, F. R. Manby, M. D. Towler, and D. Alfè, J. Chem. Phys. 136, 244105 (2012).
http://dx.doi.org/10.1063/1.4730035
102.
102.W. Klopper, J. G. C. M. van Duijneveldt-van de Rijdt, and F. B. van Duijneveldt, Phys. Chem. Chem. Phys. 2, 2227 (2000).
http://dx.doi.org/10.1039/a910312k
103.
103.G. S. Tschumper et al., J. Chem. Phys. 116, 690 (2002).
http://dx.doi.org/10.1063/1.1408302
104.
104.L. A. Curtiss, D. J. Frurip, and M. Blander, J. Chem. Phys. 71, 2703 (1979).
http://dx.doi.org/10.1063/1.438628
105.
105.J. A. Odutola and T. R. Dyke, J. Chem. Phys. 72, 5062 (1980).
http://dx.doi.org/10.1063/1.439795
106.
106.E. M. Mas et al., J. Chem. Phys. 113, 6687 (2000).
http://dx.doi.org/10.1063/1.1311289
107.
107.B. J. Smith, D. J. Swanton, J. A. Pople, and H. F. Schaeffer III, J. Chem. Phys. 92, 1240 (1990).
http://dx.doi.org/10.1063/1.458133
108.
108.W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
109.
109.D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.566
110.
110.J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
111.
111.E. E. Dahlke and D. G. Truhlar, J. Phys. Chem. B 109, 15677 (2005).
http://dx.doi.org/10.1021/jp052436c
112.
112.C. Zhang, J. Wu, G. Galli, and F. Gygi, J. Chem. Theory Comput. 7, 3054 (2011).
http://dx.doi.org/10.1021/ct200329e
113.
113.H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al., molpro, version 2012.1, a package ofab initio programs, 2012, see http://www.molpro.net.
114.
114.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996), see VASP web-site available at www.vasp.at.
http://dx.doi.org/10.1103/PhysRevB.54.11169
115.
115.D. Alfè, A. P. Bartók, G. Csányi, and M. J. Gillan, J. Chem. Phys. 141, 014104 (2014).
http://dx.doi.org/10.1063/1.4885440
116.
116.C. Lee, H. Chen, and R. Fitzgerald, J. Chem. Phys. 101, 4472 (1994).
http://dx.doi.org/10.1063/1.467434
117.
117.C. Lee, H. Chen, and G. Fitzgerald, J. Chem. Phys. 102, 1266 (1995).
http://dx.doi.org/10.1063/1.468914
118.
118.J. P. Perdew et al., Phys. Rev. Lett. 100, 136406 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.136406
119.
119.Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.890
120.
120.J. Harris, Phys. Rev. B 31, 1770 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.1770
121.
121.D. J. Lacks and R. G. Gordon, Phys. Rev. A 47, 4681 (1993).
http://dx.doi.org/10.1103/PhysRevA.47.4681
122.
122.Y. Zhang, W. Pan, and W. Yang, J. Chem. Phys. 107, 7921 (1997).
http://dx.doi.org/10.1063/1.475105
123.
123.X. Wu, M. C. Vargas, S. Nayak, V. Lotrich, and G. Scoles, J. Chem. Phys. 115, 8748 (2001).
http://dx.doi.org/10.1063/1.1412004
124.
124.F. O. Kannemann and A. D. Becke, J. Chem. Theory Comput. 5, 719 (2009).
http://dx.doi.org/10.1021/ct800522r
125.
125.E. D. Murray, K. Lee, and D. C. Langreth, J. Chem. Theory Comput. 5, 2754 (2009).
http://dx.doi.org/10.1021/ct900365q
126.
126.Y. Kanai and J. Grossman, Phys. Rev. A 80, 032504 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.032504
127.
127.J. Klimeš and A. Michaelides, J. Chem. Phys. 137, 120901 (2012).
http://dx.doi.org/10.1063/1.4754130
128.
128.G. A. DiLabio and A. Otero-de-la Roza, e-print arXiv:1405.1771(2014).
129.
129.E. J. Meijer and M. Sprik, J. Chem. Phys. 105, 8684 (1996).
http://dx.doi.org/10.1063/1.472649
130.
130.F. A. Gianturco and F. Paesani, J. Chem. Phys. 113, 3011 (2000).
http://dx.doi.org/10.1063/1.1287055
131.
131.S. Grimme, J. Comput. Chem. 25, 1463 (2004).
http://dx.doi.org/10.1002/jcc.20078
132.
132.S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
133.
133.S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
134.
134.A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.073005
135.
135.M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.246401
136.
136.J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010).
http://dx.doi.org/10.1088/0953-8984/22/2/022201
137.
137.O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. 133, 244013 (2010).
http://dx.doi.org/10.1063/1.3521275
138.
138.O. A. von Lilienfeld, I. Tavernelli, U. Rothlisberger, and D. Sebastiani, Phys. Rev. Lett. 93, 153004 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.153004
139.
139.E. Torres and G. A. DiLabio, J. Phys. Chem. Lett. 3, 1738 (2012).
http://dx.doi.org/10.1021/jz300554y
140.
140.K. Lee, E. D. Murray, L. Z. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.081101
141.
141.A. Gulans, M. J. Puska, and R. M. Nieminen, Phys. Rev. B 79, 201105 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.201105
142.
142.J. Ireta, J. Neugebauer, and M. Scheffler, J. Phys. Chem. A 108, 5692 (2004).
http://dx.doi.org/10.1021/jp0377073
143.
143.I. C. Lin, A. P. Seitsonen, M. D. Coutinho-Neto, I. Tavernelli, and U. Rothlisberger, J. Phys. Chem. B 113, 1127 (2009).
http://dx.doi.org/10.1021/jp806376e
144.
144.J. Wang, G. Román-Pérez, J. M. Soler, E. Artacho, and M. V. Fernández-Serra, J. Chem. Phys. 134, 024516 (2011).
http://dx.doi.org/10.1063/1.3521268
145.
145.J. A. Anderson and G. S. Tschumper, J. Phys. Chem. A 110, 7268 (2006).
http://dx.doi.org/10.1021/jp0613889
146.
146.D. Hankins, J. W. Moskowitz, and F. H. Stillinger, J. Chem. Phys. 53, 4544 (1970).
http://dx.doi.org/10.1063/1.1673986
147.
147.S. S. Xantheas, J. Chem. Phys. 100, 7523 (1994).
http://dx.doi.org/10.1063/1.466846
148.
148.J. M. Pedulla, K. Kim, and K. D. Jordan, Chem. Phys. Lett. 291, 78 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00582-X
149.
149.A. P. Bartók, M. J. Gillan, F. R. Manby, and G. Csányi, Phys. Rev. B 88, 054104 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.054104
150.
150.A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Phys. Rev. Lett. 104, 136403 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.136403
151.
151.H. S. Frank and W. Y. Wen, Discuss. Faraday Soc. 24, 133 (1957).
http://dx.doi.org/10.1039/df9572400133
152.
152.M. J. Elrod and R. J. Saykally, Chem. Rev. 94, 1975 (1994).
http://dx.doi.org/10.1021/cr00031a010
153.
153.A. Karpfen, Adv. Chem. Phys. 123, 469 (2002).
http://dx.doi.org/10.1002/0471231509.ch8
154.
154.H. F. Xu, H. A. Stern, and B. J. Berne, J. Phys. Chem. B 106, 2054 (2002).
http://dx.doi.org/10.1021/jp013426o
155.
155.J. C. White and E. R. Davidson, J. Chem. Phys. 93, 8029 (1990).
http://dx.doi.org/10.1063/1.459332
156.
156.S. S. Xantheas, Chem. Phys. 258, 225 (2000).
http://dx.doi.org/10.1016/S0301-0104(00)00189-0
157.
157.W. A. P. Luck, J. Mol. Struct. 448, 131 (1998).
http://dx.doi.org/10.1016/S0022-2860(98)00343-3
158.
158.S. S. Xantheas and T. H. Dunning, J. Chem. Phys. 99, 8774 (1993).
http://dx.doi.org/10.1063/1.465599
159.
159.R. J. Saykally and G. A. Blake, Science 259, 1570 (1993).
http://dx.doi.org/10.1126/science.259.5101.1570
160.
160.K. Liu, J. D. Cruzan, and R. J. Saykally, Science 271, 929 (1996).
http://dx.doi.org/10.1126/science.271.5251.929
161.
161.J. K. Gregory and D. C. Clary, J. Phys. Chem. 100, 18014 (1996).
http://dx.doi.org/10.1021/jp9616019
162.
162.F. N. Keutsch, J. D. Cruzan, and R. J. Saykally, Chem. Rev. 103, 2533 (2003).
http://dx.doi.org/10.1021/cr980125a
163.
163.V. S. Bryantsev, M. S. Diallo, A. C. T. van Duin, and W. A. Goddard, J. Chem. Theory Comput. 5, 1016 (2009).
http://dx.doi.org/10.1021/ct800549f
164.
164.Y. I. Neela, A. S. Mahadevi, and G. N. Sastry, J. Phys. Chem. B 114, 17162 (2010).
http://dx.doi.org/10.1021/jp108634z
165.
165.J. M. Guevara-Vela et al., Chem. - Eur. J. 19, 14304 (2013).
http://dx.doi.org/10.1002/chem.201300656
166.
166.U. Buck and F. Huisken, Chem. Rev. 100, 3863 (2000).
http://dx.doi.org/10.1021/cr990054v
167.
167.C. J. Tsai and K. D. Jordan, Chem. Phys. Lett. 213, 181 (1993).
http://dx.doi.org/10.1016/0009-2614(93)85438-T
168.
168.E. S. Kryachko, Chem. Phys. Lett. 314, 353 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)01100-8
169.
169.G. Hincapié, N. Acelas, M. Castaño, J. David, and A. Restrepo, J. Phys. Chem. A 114, 7809 (2010).
http://dx.doi.org/10.1021/jp103683m
170.
170.R. M. Olson, J. L. Bentz, R. A. Kendall, M. W. Schmidt, and M. S. Gordon, J. Chem. Theory Comput. 3, 1312 (2007).
http://dx.doi.org/10.1021/ct600366k
171.
171.D. M. Bates and G. S. Tschumper, J. Phys. Chem. A 113, 3555 (2009).
http://dx.doi.org/10.1021/jp8105919
172.
172.F. F. Wang, G. Jenness, W. A. Al-Saidi, and K. D. Jordan, J. Chem. Phys. 132, 134303 (2010).
http://dx.doi.org/10.1063/1.3373815
173.
173.W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.33
174.
174.R. J. Needs, M. D. Towler, N. D. Drummond, and P. L. Rios, J. Phys.: Condens. Matter 22, 023201 (2010).
http://dx.doi.org/10.1088/0953-8984/22/2/023201
175.
175.S. S. Xantheas, C. J. Burnham, and R. J. Harrison, J. Chem. Phys. 116, 1493 (2002).
http://dx.doi.org/10.1063/1.1423941
176.
176.K. Liu et al., Nature 381, 501 (1996).
http://dx.doi.org/10.1038/381501a0
177.
177.Y. Wang, V. Babin, J. M. Bowman, and F. Paesani, J. Am. Chem. Soc. 134, 11116 (2012).
http://dx.doi.org/10.1021/ja304528m
178.
178.M. J. Gillan, J. Chem. Phys. 141, 224106 (2014).
http://dx.doi.org/10.1063/1.4903240
179.
179.S. R. Pruitt, S. S. Leang, P. Xu, D. G. Fedorov, and M. S. Gordon, Comput. Theor. Chem. 1021, 70 (2013).
http://dx.doi.org/10.1016/j.comptc.2013.06.030
180.
180.A. K. Kelkkanen, B. I. Lundqvist, and J. K. Nørskov, J. Chem. Phys. 131, 046102 (2009).
http://dx.doi.org/10.1063/1.3193462
181.
181.P. L. Silvestrelli, Chem. Phys. Lett. 475, 285 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.05.049
182.
182.O. A. von Lilienfeld and A. Tkatchenko, J. Chem. Phys. 132, 234109 (2010).
http://dx.doi.org/10.1063/1.3432765
183.
183.M. J. Gillan, D. Alfè, P. J. Bygrave, C. R. Taylor, and F. R. Manby, J. Chem. Phys. 139, 114101 (2013).
http://dx.doi.org/10.1063/1.4820906
184.
184.J. Řezáć, Y. H. Huang, P. Hobza, and G. J. O. Beran, J. Chem. Theory Comput. 11, 3065 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00281
185.
185.H. J. Werner, F. R. Manby, and P. J. Knowles, J. Chem. Phys. 118, 8149 (2003).
http://dx.doi.org/10.1063/1.1564816
186.
186.B. Doser, D. S. Lambrecht, J. Kussmann, and C. Ochsenfeld, J. Chem. Phys. 130, 064107 (2009).
http://dx.doi.org/10.1063/1.3072903
187.
187.U. Gora, R. Podeszwa, W. Cencek, and K. Szalewicz, J. Chem. Phys. 135, 224102 (2011).
http://dx.doi.org/10.1063/1.3664730
188.
188.I. G. Gurtubay and R. J. Needs, J. Chem. Phys. 127, 124306 (2007).
http://dx.doi.org/10.1063/1.2770711
189.
189.J. Ma, D. Alfè, A. Michaelides, and E. Wang, J. Chem. Phys. 130, 154303 (2009).
http://dx.doi.org/10.1063/1.3111035
190.
190.M. Dubecky et al., J. Chem. Theory Comput. 9, 4287 (2013).
http://dx.doi.org/10.1021/ct4006739
191.
191.A. Ambrosetti, D. Alfè, R. A. DiStasio, and A. Tkatchenko, J. Phys. Chem. Lett. 5, 849 (2014).
http://dx.doi.org/10.1021/jz402663k
192.
192.D. Alfè, A. P. Bartók, G. Csányi, and M. J. Gillan, J. Chem. Phys. 138, 221102 (2013).
http://dx.doi.org/10.1063/1.4810882
193.
193.M. A. Morales et al., J. Chem. Theory Comput. 10, 2355 (2014).
http://dx.doi.org/10.1021/ct500129p
194.
194.V. F. Petrenko and R. W. Whitworth, Physics of Ice (Oxford University Press, Oxford, 1999).
195.
195.S. Kawada, J. Phys. Soc. Jpn. 32, 1442 (1972).
http://dx.doi.org/10.1143/JPSJ.32.1442
196.
196.Y. Tajima, T. Matsuo, and H. Suga, Nature 299, 810 (1982).
http://dx.doi.org/10.1038/299810a0
197.
197.D. Pan et al., J. Phys.: Condens. Matter 22, 074209 (2010).
http://dx.doi.org/10.1088/0953-8984/22/7/074209
198.
198.B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev. B 59, 7413 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.7413
199.
199.R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085108
200.
200.J. P. Perdew et al., Phys. Rev. B 46, 6671 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.6671
201.
201.J. P. Perdew et al., Phys. Rev. B 48, 4978 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.4978.2
202.
202.E. Whalley, J. Chem. Phys. 81, 4087 (1984).
http://dx.doi.org/10.1063/1.448153
203.
203.J. G. Brandenburg, T. Maas, and S. Grimme, J. Chem. Phys. 142, 124104 (2015).
http://dx.doi.org/10.1063/1.4916070
204.
204.Y. Fang, B. Xiao, J. Tao, J. Sun, and J. P. Perdew, Phys. Rev. B 87, 214101 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.214101
205.
205.B. Santra et al., J. Chem. Phys. 139, 154702 (2013).
http://dx.doi.org/10.1063/1.4824481
206.
206.O. Kambara, K. Takahashi, M. Hayashi, and J.-L. Kuo, Phys. Chem. Chem. Phys. 14, 11484 (2012).
http://dx.doi.org/10.1039/c2cp41495c
207.
207.I. Hamada, J. Chem. Phys. 133, 214503 (2010).
http://dx.doi.org/10.1063/1.3507916
208.
208.B. Kolb and T. Thonhauser, Phys. Rev. B 84, 045116 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.045116
209.
209.E. D. Murray and G. Galli, Phys. Rev. Lett. 108, 105502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.105502
210.
210.A. Tkatchenko, R. A. DiStasio, R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.236402
211.
211.V. Buch, P. Sandler, and J. Sadlej, J. Phys. Chem. B 102, 8641 (1998).
http://dx.doi.org/10.1021/jp980866f
212.
212.J. L. Kuo and M. L. Klein, J. Phys. Chem. B 108, 19634 (2004).
http://dx.doi.org/10.1021/jp0482363
213.
213.S. J. Singer et al., Phys. Rev. Lett. 94, 135701 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.135701
214.
214.C. Knight et al., Phys. Rev. E 73, 056113 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.056113
215.
215.G. A. Tribello, B. Slater, and C. G. Salzmann, J. Am. Chem. Soc. 128, 12594 (2006).
http://dx.doi.org/10.1021/ja0630902
216.
216.G. A. Tribello and B. Slater, Chem. Phys. Lett. 425, 246 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.04.111
217.
217.X. F. Fan, D. Bing, J. Y. Zhang, Z. X. Shen, and J. L. Kuo, Comput. Mater. Sci. 49, S170 (2010).
http://dx.doi.org/10.1016/j.commatsci.2010.04.004
218.
218.S. J. Singer and C. Knight, Adv. Chem. Phys. 147, 1 (2011).
http://dx.doi.org/10.1002/9781118135242.ch1
219.
219.M. Del Ben, J. VandeVondele, and B. Slater, J. Phys. Chem. Lett. 5, 4122 (2014).
http://dx.doi.org/10.1021/jz501985w
220.
220.N. Bjerrum, Science 115, 385 (1952).
http://dx.doi.org/10.1126/science.115.2989.385
221.
221.E. R. Davidson and K. Morokuma, J. Chem. Phys. 81, 3741 (1984).
http://dx.doi.org/10.1063/1.448101
222.
222.S. M. Jackson and R. W. Whitworth, J. Chem. Phys. 103, 7647 (1995).
http://dx.doi.org/10.1063/1.470285
223.
223.S. M. Jackson, V. M. Nield, R. W. Whitworth, M. Oguro, and C. C. Wilson, J. Phys. Chem. B 101, 6142 (1997).
http://dx.doi.org/10.1021/jp9632551
224.
224.M. J. Iedema et al., J. Phys. Chem. B 102, 9203 (1998).
http://dx.doi.org/10.1021/jp982549e
225.
225.J. L. Kuo, J. V. Coe, S. J. Singer, Y. B. Band, and L. Ojamäe, J. Chem. Phys. 114, 2527 (2001).
http://dx.doi.org/10.1063/1.1336804
226.
226.J. L. Kuo and S. J. Singer, Phys. Rev. E 67, 016114 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.016114
227.
227.M. Schönherr, B. Slater, J. Hutter, and J. VandeVondele, J. Phys. Chem. B 118, 590 (2014).
http://dx.doi.org/10.1021/jp4103355
228.
228.C. Knight and S. J. Singer, J. Chem. Phys. 129, 164513 (2008).
http://dx.doi.org/10.1063/1.2991297
229.
229.C. Salzmann, P. Radaelli, E. Mayer, and J. Finney, Phys. Rev. Lett. 103, 105701 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.105701
230.
230.C. Knight and S. J. Singer, J. Phys. Chem. B 109, 21040 (2005).
http://dx.doi.org/10.1021/jp0540609
231.
231.J. J. Shephard and C. G. Salzmann, Chem. Phys. Lett. 637, 63 (2015).
http://dx.doi.org/10.1016/j.cplett.2015.07.064
232.
232.W. X. Zhang, C. He, J. S. Lian, and Q. Jiang, Chem. Phys. Lett. 421, 251 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.01.085
233.
233.B. J. Murray and A. K. Bertram, Phys. Chem. Chem. Phys. 8, 186 (2006).
http://dx.doi.org/10.1039/B513480C
234.
234.T. L. Malkin, B. J. Murray, A. V. Brukhno, J. Anwar, and C. G. Salzmann, Proc. Natl. Acad. Sci. U. S. A. 109, 1041 (2012).
http://dx.doi.org/10.1073/pnas.1113059109
235.
235.W. F. Kuhs, C. Sippel, A. Falenty, and T. C. Hansen, Proc. Natl. Acad. Sci. U. S. A. 109, 21259 (2012).
http://dx.doi.org/10.1073/pnas.1210331110
236.
236.Z. Raza et al., Phys. Chem. Chem. Phys. 13, 19788 (2011).
http://dx.doi.org/10.1039/c1cp22506e
237.
237.P. Geiger et al., J. Phys. Chem. C 118, 10989 (2014).
http://dx.doi.org/10.1021/jp500324x
238.
238.E. A. Engel, B. Monserrat, and R. J. Needs, Phys. Rev. X 5, 021033 (2015).
http://dx.doi.org/10.1103/physrevx.5.021033
239.
239.K. Röttger, A. Endriss, J. Ihringer, S. Doyle, and W. F. Kuhs, Acta Crystallogr., Sect. B: Struct. Sci. 50, 644 (1994).
http://dx.doi.org/10.1107/s0108768194004933
240.
240.B. Pamuk, J. M. Soler, R. Ramírez, C. P. Herrero, P. W. Stephens, P. B. Allen, and M.-V. Fernández-Serra, Phys. Rev. Lett. 108, 193003 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.193003
241.
241.B. Pamuk, P. B. Allen, and M.-V. Fernández-Serra, Phys. Rev. B 92, 134105 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.134105
242.
242.R. Z. Khaliullin and T. D. Kühne, Phys. Chem. Chem. Phys. 15, 15746 (2013).
http://dx.doi.org/10.1039/c3cp51039e
243.
243.L. B. Skinner et al., J. Chem. Phys. 138, 074506 (2013).
http://dx.doi.org/10.1063/1.4790861
244.
244.T. Strässle et al., Phys. Rev. Lett. 96, 067801 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.067801
245.
245.G. Weck et al., Phys. Rev. B 80, 180202 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.180202
246.
246.Y. Katayama et al., Phys. Rev. B 81, 014109 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.014109
247.
247.A. Luzar and D. Chandler, Nature 379, 55 (1996).
http://dx.doi.org/10.1038/379055a0
248.
248.A. Bankura, A. Karmakar, V. Carnevale, A. Chandra, and M. L. Klein, J. Phys. Chem. C 118, 29401 (2014).
http://dx.doi.org/10.1021/jp506120t
249.
249.R. G. Fernández, J. L. F. Abascal, and C. Vega, J. Chem. Phys. 124, 144506 (2006).
http://dx.doi.org/10.1063/1.2183308
250.
250.S. Habershon, T. E. Markland, and D. E. Manolopoulos, J. Chem. Phys. 131, 024501 (2009).
http://dx.doi.org/10.1063/1.3167790
251.
251.T. D. Kühne, M. Krack, and M. Parrinello, J. Chem. Theory Comput. 5, 235 (2009).
http://dx.doi.org/10.1021/ct800417q
252.
252.T. Kühne, M. Krack, F. R. Mohamed, and M. Parrinello, Phys. Rev. Lett. 98, 066401 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.066401
253.
253.T. D. Kuhne and R. Z. Khaliullin, Nat. Commun. 4, 1450 (2013).
http://dx.doi.org/10.1038/ncomms2459
254.
254.S. Izvekov and G. A. Voth, J. Chem. Phys. 116, 10372 (2002).
http://dx.doi.org/10.1063/1.1473659
255.
255.I. F. W. Kuo, C. J. Mundy, M. J. McGrath, and J. I. Siepmann, J. Chem. Theory Comput. 2, 1274 (2006).
http://dx.doi.org/10.1021/ct6001913
256.
256.A. Soper and C. Benmore, Phys. Rev. Lett. 101, 065502 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.065502
257.
257.B. Chen, I. Ivanov, M. L. Klein, and M. Parrinello, Phys. Rev. Lett. 91, 215503 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.215503
258.
258.J. Morrone and R. Car, Phys. Rev. Lett. 101, 017801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.017801
259.
259.M. Ceriotti, J. Cuny, M. Parrinello, and D. E. Manolopoulos, Proc. Natl. Acad. Sci. U. S. A. 110, 15591 (2013).
http://dx.doi.org/10.1073/pnas.1308560110
260.
260.L. Wang, M. Ceriotti, and T. E. Markland, J. Chem. Phys. 141, 104502 (2014).
http://dx.doi.org/10.1063/1.4894287
261.
261.M. Ceriotti, J. More, and D. E. Manolopoulos, Comput. Phys. Commun. 185, 1019 (2014).
http://dx.doi.org/10.1016/j.cpc.2013.10.027
262.
262.M. Ceriotti, W. Fang, P. G. Kusalik, R. H. McKenzie, A. Michaelides, M. A. Morales, and T. E. Markland, “Nuclear quantum effects in water and aqueous systems: Experiment, theory and current challenges,” Chem. Rev. (to be published).
263.
263.H.-S. Lee and M. E. Tuckerman, J. Chem. Phys. 125, 154507 (2006).
http://dx.doi.org/10.1063/1.2354158
264.
264.K. Forster-Tonigold and A. Gross, J. Chem. Phys. 141, 064501 (2014).
http://dx.doi.org/10.1063/1.4892400
265.
265.A. E. Mattsson and T. R. Mattsson, J. Chem. Theory Comput. 5, 887 (2009).
http://dx.doi.org/10.1021/ct8004968
266.
266.T. Todorova, A. P. Seitsonen, J. Hutter, I. F. W. Kuo, and C. J. Mundy, J. Phys. Chem. B 110, 3685 (2006).
http://dx.doi.org/10.1021/jp055127v
267.
267.R. A. DiStasio, B. Santra, Z. F. Li, X. F. Wu, and R. Car, J. Chem. Phys. 141, 084502 (2014).
http://dx.doi.org/10.1063/1.4893377
268.
268.M. Guidon, F. Schiffmann, J. Hutter, and J. VandeVondele, J. Chem. Phys. 128, 214104 (2008).
http://dx.doi.org/10.1063/1.2931945
269.
269.M. Guidon, J. Hutter, and J. VandeVondele, J. Chem. Theory Comput. 6, 2348 (2010).
http://dx.doi.org/10.1021/ct1002225
270.
270.M. Del Ben, J. Hutter, and J. VandeVondele, J. Chem. Phys. 143, 054506 (2015).
http://dx.doi.org/10.1063/1.4927325
271.
271.I. F. W. Kuo and C. J. Mundy, Science 303, 658 (2004).
http://dx.doi.org/10.1126/science.1092787
272.
272.M. J. McGrath et al., ChemPhysChem 6, 1894 (2005).
http://dx.doi.org/10.1002/cphc.200400580
273.
273.J. Schmidt et al., J. Phys. Chem. B 113, 11959 (2009).
http://dx.doi.org/10.1021/jp901990u
274.
274.M. D. Baer et al., J. Chem. Phys. 135, 124712 (2011).
http://dx.doi.org/10.1063/1.3633239
275.
275.Z. Ma, Y. Zhang, and M. E. Tuckerman, J. Chem. Phys. 137, 044506 (2012).
http://dx.doi.org/10.1063/1.4736712
276.
276.I. C. Lin, A. P. Seitsonen, I. Tavernelli, and U. Rothlisberger, J. Chem. Theory Comput. 8, 3902 (2012).
http://dx.doi.org/10.1021/ct3001848
277.
277.M. Del Ben, M. Schoenherr, J. Hutter, and J. VandeVondele, J. Phys. Chem. Lett. 4, 3753 (2013).
http://dx.doi.org/10.1021/jz401931f
278.
278.F. Corsetti, E. Artacho, J. M. Soler, S. S. Alexandre, and M. V. Fernández-Serra, J. Chem. Phys. 139, 194502 (2013).
http://dx.doi.org/10.1063/1.4832141
279.
279.G. Miceli, S. de Gironcoli, and A. Pasquarello, J. Chem. Phys. 142, 034501 (2015).
http://dx.doi.org/10.1063/1.4905333
280.
280.A. P. Gaiduk, F. Gygi, and G. Galli, J. Phys. Chem. Lett. 6, 2902 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00901
281.
281.R. Jonchiere, A. P. Seitsonen, G. Ferlat, A. M. Saitta, and R. Vuilleumier, J. Chem. Phys. 135, 154503 (2011).
http://dx.doi.org/10.1063/1.3651474
282.
282.M. J. McGrath, I. F. W. Kuo, and J. I. Siepmann, Phys. Chem. Chem. Phys. 13, 19943 (2011).
http://dx.doi.org/10.1039/c1cp21890e
283.
283.S. Yoo and S. S. Xantheas, J. Chem. Phys. 134, 121105 (2011).
http://dx.doi.org/10.1063/1.3573375
284.
284.D. Alfe and M. J. Gillan, “Dispersion-inclusive DFT approximations and the energetics of the water dimer, hexamer and ice structures” (unpublished).
285.
285.A. Møgelhøj et al., J. Phys. Chem. B 115, 14149 (2011).
http://dx.doi.org/10.1021/jp2040345
286.
286.M. Allesch, E. Schwegler, F. Gygi, and G. Galli, J. Chem. Phys. 120, 5192 (2004).
http://dx.doi.org/10.1063/1.1647529
287.
287.K. Leung and S. B. Rempe, Phys. Chem. Chem. Phys. 8, 2153 (2006).
http://dx.doi.org/10.1039/b515126k
288.
288.I. Hamada, Phys. Rev. B 89, 121103 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.121103
289.
289.J.-P. Piquemal, A. Marquez, O. Parisel, and C. Giessner-Prettre, J. Comput. Chem. 26, 1052 (2005).
http://dx.doi.org/10.1002/jcc.20242
290.
290.P. Jurečka, J. Šponer, J. Černy, and P. Hobza, Phys. Chem. Chem. Phys. 8, 1985 (2006).
http://dx.doi.org/10.1039/B600027D
291.
291.J. Řezáć, K. E. Riley, and P. Hobza, J. Chem. Theory Comput. 7, 2427 (2011).
http://dx.doi.org/10.1021/ct2002946
292.
292.J. Řezáć, K. E. Riley, and P. Hobza, J. Chem. Theory Comput. 7, 3466 (2011).
http://dx.doi.org/10.1021/ct200523a
293.
293.A. Tkatchenko and O. A. von Lilienfeld, Phys. Rev. B 78, 045116 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.045116
294.
294.Y. H. Huang and G. J. O. Beran, J. Chem. Phys. 143, 044113 (2015).
http://dx.doi.org/10.1063/1.4927304
295.
295.N. Bonnet and N. Marzari, Phys. Rev. Lett. 113, 245501 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.245501
296.
296.B. Santra, R. A. DiStasio, F. Martellia, and R. Car, Mol. Phys. 113, 2829 (2015).
http://dx.doi.org/10.1080/00268976.2015.1058432
297.
297.T. Morawietz, A. Singraber, C. Dellago, and J. Behler, “How van der Waals interactions determine the unique properties of water” (unpublished).
298.
298.A. Zen, Y. Luo, G. Mazzola, L. Guidoni, and S. Sorella, J. Chem. Phys. 142, 144111 (2015).
http://dx.doi.org/10.1063/1.4917171
299.
299.A. D. Becke, J. Chem. Phys. 84, 4524 (1986).
http://dx.doi.org/10.1063/1.450025
300.
300.M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985).
http://dx.doi.org/10.1103/PhysRevA.32.2010
301.
301.R. Colle and O. Salvetti, Theor. Chim. Acta 37, 329 (1975).
http://dx.doi.org/10.1007/BF01028401
302.
302.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
303.
303.J. Harris and R. O. Jones, J. Phys. F: Met. Phys. 4, 1170 (1974).
http://dx.doi.org/10.1088/0305-4608/4/8/013
304.
304.O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.4274
305.
305.Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 3, 289 (2007).
http://dx.doi.org/10.1021/ct6002719
306.
306.F. L. Hirshfeld, Theor. Chim. Acta 44, 129 (1977).
http://dx.doi.org/10.1007/BF00549096
307.
307.E. R. Johnson and A. D. Becke, J. Chem. Phys. 123, 024101 (2005).
http://dx.doi.org/10.1063/1.1949201
308.
308.K. Rapcewicz and N. W. Ashcroft, Phys. Rev. B 44, 4032 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.4032
309.
309.Y. Andersson, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 76, 102 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.102
310.
310.H. Rydberg et al., Phys. Rev. Lett. 91, 126402 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.126402
311.
311.R. Sabatini, T. Gorni, and S. de Gironcoli, Phys. Rev. B 87, 041108 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.041108
312.
312.G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.096102
313.
313.M. V. Fernández-Serra, G. Ferlat, and E. Artacho, Mol. Simul. 31, 361 (2005).
http://dx.doi.org/10.1080/08927020500066726
314.
314.M. J. McGrath et al., J. Phys. Chem. A 110, 640 (2006).
http://dx.doi.org/10.1021/jp0535947
315.
315.H.-S. Lee and M. E. Tuckerman, J. Chem. Phys. 126, 164501 (2007).
http://dx.doi.org/10.1063/1.2718521
316.
316.A. Z. Panagiotopoulos, Mol. Phys. 61, 813 (1987).
http://dx.doi.org/10.1080/00268978700101491
317.
317.S. B. Rempe, T. R. Mattsson, and K. Leung, Phys. Chem. Chem. Phys. 10, 4685 (2008).
http://dx.doi.org/10.1039/b810017a
318.
318.X. Xu and W. A. Goddard, Proc. Natl. Acad. Sci. U. S. A. 101, 2673 (2004).
http://dx.doi.org/10.1073/pnas.0308730100
319.
319.A. K. Soper, J. Phys.: Condens. Matter 19, 335206 (2007).
http://dx.doi.org/10.1088/0953-8984/19/33/335206
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/13/10.1063/1.4944633
Loading
/content/aip/journal/jcp/144/13/10.1063/1.4944633
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/13/10.1063/1.4944633
2016-04-01
2016-12-04

Abstract

Kohn-Sham density functional theory(DFT) has become established as an indispensable tool for investigating aqueous systems of all kinds, including those important in chemistry, surface science, biology, and the earth sciences. Nevertheless, many widely used approximations for the exchange-correlation (XC) functional describe the properties of pure water systems with an accuracy that is not fully satisfactory. The explicit inclusion of dispersion interactions generally improves the description, but there remain large disagreements between the predictions of different dispersion-inclusive methods. We present here a review of DFT work on water clusters, ice structures, and liquidwater, with the aim of elucidating how the strengths and weaknesses of different XC approximations manifest themselves across this variety of water systems. Our review highlights the crucial role of dispersion in describing the delicate balance between compact and extended structures of many different water systems, including the liquid. By referring to a wide range of published work, we argue that the correct description of exchange-overlap interactions is also extremely important, so that the choice of semi-local or hybrid functional employed in dispersion-inclusive methods is crucial. The origins and consequences of beyond-2-body errors of approximate XC functionals are noted, and we also discuss the substantial differences between different representations of dispersion. We propose a simple numerical scoring system that rates the performance of different XC functionals in describing water systems, and we suggest possible future developments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/13/1.4944633.html;jsessionid=EH4_S1ilwh_8ZuecBFgQ1BDU.x-aip-live-06?itemId=/content/aip/journal/jcp/144/13/10.1063/1.4944633&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/13/10.1063/1.4944633&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/13/10.1063/1.4944633'
Right1,Right2,Right3,