Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. S. Arruda, R. R. T. Marinho, A. M. Maniero, M. S. Mundim, A. Mocellin, S. Pilling, A. N. de Brito, and F. V. Prudente, J. Phys. Chem. A 116, 6693 (2012).
2.S. Heinbuch, F. Dong, J. J. Rocca, and E. R. Bernstein, J. Chem. Phys. 128, 244301 (2007).
3.J. Guan, Y. Hu, H. Zou, L. Cao, F. Liu, X. Shan, and L. Sheng, J. Chem. Phys. 137, 124308 (2012).
4.M. Amada, Y. Sato, M. Tsuge, and K. Hoshina, Chem. Phys. Lett. 624, 24 (2015).
5.S. Tomoda, Y. Achiba, K. Nomoto, K. Sato, and K. Kimura, Chem. Phys. 74, 113 (1983).
6.K. Hoshina, H. Hagihara, and M. Tsuge, J. Phys. Chem. A 116, 826 (2012).
7.W. Li, Y. Hu, J. Guan, F. Liu, X. Shan, and L. Sheng, J. Chem. Phys. 139, 024307 (2013).
8.W. Xiao, Y. Hu, W. Li, J. Guan, F. Liu, X. Shan, and L. Sheng, J. Chem. Phys. 142, 024306 (2015).
9.B. L. Yoder, K. B. Bravaya, A. Bodi, A. H. C. West, B. Sztáray, and R. Signorell, J. Chem. Phys. 142, 114303 (2015).
10.S. Leach, H. Jochims, and H. Baumgärtel, J. Phys. Chem. A 114, 4847 (2010).
11.M. S. Arruda, A. Medina, J. N. Sousa, L. A. V. Mendes, R. R. T. Marinho, and F. V. Prudente, J. Phys. Chem. A 119, 10300 (2015).
12.A. J. Yencha, M. R. F. Siggel-King, G. C. King, A. E. R. Malins, and M. Eypper, J. Electron Spectrosc. Relat. Phenom. 187, 65 (2013).
13.A. K. Vasiliou, K. M. Piech, B. R. X. Zhang, M. R. Nimlos, M. Ahmed, A. Golan, O. Kostko, D. L. Osborn, D. E. David, K. N. Urness, J. W. Daily, J. F. Stanton, and G. B. Ellison, J. Chem. Phys. 137, 164308 (2012).
14.S. Scheiner and C. W. Kern, J. Am. Chem. Soc. 101, 4081 (1979).
15.E. N. Nikolova, G. B. Goh, C. L. Brooks III, and H. M. Al-Hashimi, J. Am. Chem. Soc. 135, 6766 (2013).
16.S. Leach, M. Schwell, H. Jochims, and H. Baumgärtel, Chem. Phys. 321, 171 (2006).
17.K. Gluch, J. Cytawa, and L. Michalak, Int. J. Mass Spectrom. 273, 20 (2008).
18.F. Burmeister, L. H. Coutinho, R. R. T. Marinho, M. G. P. Homem, M. A. A. de Morais, A. Mocellin, O. Bjorneholm, S. L. Sorensen, P. T. Fonseca, A. Lindgrenf, and A. N. de Brito, J. Electron Spectrosc. Relat. Phenom. 180, 6 (2010).
19.A. Rubens, B. de Castro, P. T. Fonseca, J. G. Pacheco, J. E. Verdugo, M. S. Z. Graeff, and G. B. Fraguas, Braz. J. Phys. 23, 53 (1993).
20.P. T. Fonseca, J. G. Pacheco, E. d’A Samogin, and A. R. B. de Castro, Rev. Sci. Instrum. 63, 1256 (1992).
21.P. T. Fonseca, M. M. Faleiros, H. R. Moraes, L. Souza, G. L. P. M. Rodrigues, D. S. Chaves, C. Ambrósio, and A. N. de Brito, J. Phys.: Conf. Ser. 425, 122003 (2013).
22.R. L. Cavasso Filho, M. G. P. Homen, P. T. Fonseca, and A. N. de Brito, Rev. Sci. Instrum. 78, 115104 (2007).
23.P. Piecuch, S. A. Kucharski, K. Kowalski, and M. Musial, Comput. Phys. Commun. 149, 71 (2002).
24.C. M. Aikens, S. P. Webb, R. L. Bell, G. D. Fletcher, M. W. Schmidt, and M. S. Gordon, Theor. Chem. Acc. 110, 233 (2003).
25.M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).
26.R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).
27.S. Pilling, R. Neves, A. C. F. Santos, and H. M. Boechat-Roberty, Astron. Astrophys. 464, 393 (2007).
28.K. Tabayashi, K. Yamamoto, O. Takahashi, Y. Tamenori, J. R. Harries, T. Gejo, M. Iseda, T. Tamura, K. Honma, I. H. Suzuki, S. Nagaoka, and T. Ibuki, J. Chem. Phys. 125, 194307 (2006).
29.J. Chao and B. J. Zwolinski, J. Phys. Chem. Ref. Data 7, 363 (1978).

Data & Media loading...


Article metrics loading...



The ionization and fragmentation of monomers of organic molecules have been extensively studied in the gas phase using mass spectroscopy. In the spectra of these molecules it is possible to identify the presence of protonated cations, which have a mass-to-charge ratio one unit larger than the parent ion. In this work, we investigate this protonation process as a result of dimers photofragmentation. Experimental photoionization and photofragmentation results of doubly deuterated formic acid (DCOOD) in the gas phase by photons in the vacuum ultraviolet region are presented. The experiment was performed by using a time-of-flightmass spectrometer installed at the Brazilian Synchrotron Light Laboratory and spectra for different pressure values in the experimental chamber were obtained. The coupled cluster approach with single and double substitutions was employed to assist the experimental analysis. Results indicate that protonated formic acid ions are originated from dimer dissociation, and the threshold photoionization of (DCOOD)⋅D+ is also determined.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd