Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Here, by uncontrolled it is meant that there does not exist a systematic way of arbitrarily reducing the fixed-node error.
2.C. J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, and R. G. Hennig, Phys. Rev. Lett. 98, 110201 (2007).
3.K. E. Schmidt and J. W. Moskowitz, J. Chem. Phys. 93, 4172 (1990).
4.E. Giner, A. Scemama, and M. Caffarel, Can. J. Chem. 91, 879 (2013).
5.A. Scemama, T. Applencourt, E. Giner, and M. Caffarel, J. Chem. Phys. 141, 244110 (2014).
6.E. Giner, A. Scemama, and M. Caffarel, J. Chem. Phys. 142, 044115 (2015).
7.B. Huron, J. P. Malrieu, and P. Rancurel, J. Chem. Phys. 58, 5745 (1973).
8.S. Evangelisti, J. P. Daudey, and J. P. Malrieu, Chem. Phys. 75, 91 (1983).
9.C. F. Bender and E. R. Davidson, Phys. Rev. 183, 23 (1969).
10.R. J. Buenker and S. D. Peyerimholf, Theor. Chim. Acta 35, 33 (1974).
11.R. J. Buenker and S. D. Peyerimholf, Theor. Chim. Acta 39, 217 (1975).
12.R. J. Buenker, S. D. Peyerimholf, and W. Butscher, Mol. Phys. 35, 771 (1978).
13.P. J. Bruna, D. S. Peyerimholf, and R. J. Buenker, Chem. Phys. Lett. 72, 278 (1980).
14.R. J. Buenker, S. D. Peyerimholf, and P. J. Bruna, Computational Theoretical Organic Chemistry (Reidel, Dordrecht, 1981), p. 55.
15.R. J. Harrison, J. Chem. Phys. 94, 5021 (1991).
16.M. Caffarel, E. Giner, A. Scemama, and A. Ramírez-Solís, J. Chem. Theory Comput. 10, 5286 (2014).
17.G. H. Booth, A. J. W. Thom, and A. Alavi, J. Chem. Phys. 131, 054106 (2009).
18.D. Cleland, G. H. Booth, and A. Alavi, J. Chem. Phys. 132, 041103 (2010).
19.P. K. V. V. Nukala and P. R. C. Kent, J. Chem. Phys. 130, 204105 (2009).
20.B. K. Clark, M. A. Morales, J. McMinis, J. Kim, and G. E. Scuseria, J. Chem. Phys. 135, 244105 (2011).
21.G. L. Weerasinghe, P. López-Ríos, and R. J. Needs, Phys. Rev. E 89, 023304 (2014).
22.A. Scemama, T. Applencourt, E. Giner, and M. Caffarel, “Quantum Monte Carlo with very large multideterminant wavefunctions,” J. Comput. Chem. (in press).
23. An increase in the fixed-node energy may be sometimes observed at small number of determinants, (say, less than a few thousands) when large basis sets and/or canonical orbitals are used. This transient behavior has been found to systematically disappear when natural orbitals are used and/or larger expansions are considered.
24.H. J. Flad, M. Caffarel, and A. Savin, Recent Advances in Quantum Monte Carlo Methods (World Scientific Publishing, 1997).
25.W. Klopper, Mol. Phys. 99, 481 (2001).
26.A. Scemama, E. Giner, T. Applencourt, G. David, and M. Caffarel (2015). “Quantum Package,” Zenodo.
27.C. X. Almora-Díaz, J. Chem. Phys. 140, 184302 (2014).
28.A. Scemama, E. Giner, T. Applencourt, and M. Caffarel, Qmc=chem,
29.T. Helgaker, W. Klopper, H. Koch, and J. Noga, J. Chem. Phys. 106, 9639 (1997).
30.H. Muller and W. Kutzelnigg, Mol. Phys. 92, 535 (1997).
31.A. Halkier, T. Helgaker, P. Jorgensen, W. Klopper, H. Koh, J. Olsen, and A. K. Wilson, Chem. Phys. Lett. 286, 243 (1998).
32.L. Bytautas and K. Ruedenberg, J. Chem. Phys. 124, 174304 (2006).

Data & Media loading...


Article metrics loading...



All-electron Fixed-node DiffusionMonte Carlo calculations for the nonrelativistic ground-state energy of the water molecule at equilibrium geometry are presented. The determinantal part of the trial wavefunction is obtained from a selected Configuration Interaction calculation[Configuration Interaction using a Perturbative Selection done Iteratively (CIPSI) method] including up to about 1.4 × 106 of determinants. Calculations are made using the cc-pCVZ family of basis sets, with = 2 to 5. In contrast with most quantum Monte Carlo works no re-optimization of the determinantal part in presence of a Jastrow is performed. For the largest cc-pCV5Z basis set the lowest upper bound for the ground-state energy reported so far of −76.437 44(18) is obtained. The fixed-node energy is found to decrease regularly as a function of the cardinal number and the Complete Basis Set limit associated with is easily extracted. The resulting energy of −76.438 94(12) — in perfect agreement with the best experimentally derived value — is the most accurate theoretical estimate reported so far. We emphasize that employing selected configuration interactionnodes of increasing quality in a given family of basis sets may represent a simple, deterministic, reproducible, and systematic way of controlling the fixed-node error in diffusionMonte Carlo.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd