Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/16/10.1063/1.4947470
1.
1.W. Kauzmann, Chem. Rev. 43, 219 (1948).
http://dx.doi.org/10.1021/cr60135a002
2.
2.G. W. Scherer, Relaxation in Glass and Composites (Wiley, New York, 1986).
3.
3.M. D. Ediger, C. A. Angell, and S. R. Nagel, J. Phys. Chem. 100, 13200 (1996).
http://dx.doi.org/10.1021/jp953538d
4.
4.C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and S. W. Martin, J. Appl. Phys. 88, 3113 (2000).
http://dx.doi.org/10.1063/1.1286035
5.
5.P. G. Debenedetti and F. H. Stillinger, Nature 410, 259 (2001).
http://dx.doi.org/10.1038/35065704
6.
6.J. C. Dyre, Rev. Mod. Phys. 78, 953 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.953
7.
7.M. D. Ediger and P. Harrowell, J. Chem. Phys. 137, 080901 (2012).
http://dx.doi.org/10.1063/1.4747326
8.
8.L. Berthier and M. Ediger, Phys. Today 69(1), 40 (2016).
http://dx.doi.org/10.1063/PT.3.3052
9.
9.J. P. Garrahan and D. Chandler, Proc. Natl. Acad. Sci. U. S. A. 100, 9710 (2003).
http://dx.doi.org/10.1073/pnas.1233719100
10.
10.R. Böhmer, C. Gainaru, and R. Richert, Phys. Rep. 545, 125 (2014).
http://dx.doi.org/10.1016/j.physrep.2014.07.005
11.
11.D. W. Davidson and R. H. Cole, J. Chem. Phys. 19, 1484 (1951).
http://dx.doi.org/10.1063/1.1748105
12.
12.R. H. Cole and D. W. Davidson, J. Chem. Phys. 20, 1389 (1952).
http://dx.doi.org/10.1063/1.1700767
13.
13.W. Dannhauser, J. Chem. Phys. 48, 1911 (1968).
http://dx.doi.org/10.1063/1.1668989
14.
14.P. Debye, Polar Liquids (The Chemical Catalog Company, Inc., New York, 1929).
15.
15.A. Kudlik, C. Tschirwitz, S. Benkhof, T. Blochowicz, and E. Rössler, Europhys. Lett. 40, 649 (1997).
http://dx.doi.org/10.1209/epl/i1997-00518-y
16.
16.C. Hansen, F. Stickel, T. Berger, R. Richert, and E. W. Fischer, J. Chem. Phys. 107, 1086 (1997).
http://dx.doi.org/10.1063/1.474456
17.
17.L. M. Wang and R. Richert, J. Chem. Phys. 121(22), 11170 (2004).
http://dx.doi.org/10.1063/1.1811072
18.
18.H. Huth, L.-M. Wang, C. Schick, and R. Richert, J. Chem. Phys. 126, 104503 (2007).
http://dx.doi.org/10.1063/1.2539105
19.
19.B. Jakobsen, C. Maggi, T. Christensen, and J. C. Dyre, J. Chem. Phys. 129, 184502 (2008).
http://dx.doi.org/10.1063/1.3007988
20.
20.S. Schwerdtfeger, F. Köhler, R. Pottel, and U. Kaatze, J. Chem. Phys. 115, 4186 (2001).
http://dx.doi.org/10.1063/1.1389293
21.
21.M. Preuss, C. Gainaru, T. Hecksher, S. Bauer, J. C. Dyre, R. Richert, and R. Böhmer, J. Chem. Phys. 137, 144502 (2012).
http://dx.doi.org/10.1063/1.4755754
22.
22.S. Bauer, H. Wittkamp, S. Schildmann, M. Frey, W. Hiller, T. Hecksher, N. B. Olsen, C. Gainaru, and R. Böhmer, J. Chem. Phys. 139, 134503 (2013).
http://dx.doi.org/10.1063/1.4821229
23.
23.Y. Gao, W. Tu, Z. Chen, Y. Tian, R. Liu, and L.-M. Wang, J. Chem. Phys. 139, 164504 (2013).
http://dx.doi.org/10.1063/1.4825398
24.
24.S. S. N. Murthy, J. Phys. Chem. 100, 8508 (1996).
http://dx.doi.org/10.1021/jp953596z
25.
25.T. Hecksher and B. Jakobsen, J. Chem. Phys. 141, 101104 (2014).
http://dx.doi.org/10.1063/1.4895095
26.
26.G. P. Johari and W. Dannhauser, J. Phys. Chem. 72, 3273 (1968).
http://dx.doi.org/10.1021/j100855a030
27.
27.M. A. Floriano and C. A. Angell, J. Chem. Phys. 91, 2537 (1989).
http://dx.doi.org/10.1063/1.457013
28.
28.M. Iwahashi, Y. Hayashi, N. Hachiya, H. Matsuzawa, and H. Kobayashi, J. Chem. Soc. Faraday Trans. 89, 707 (1993).
http://dx.doi.org/10.1039/ft9938900707
29.
29.D. Morineau and C. Alba-Simionesco, J. Phys. Chem. Lett. 1, 1155 (2010).
http://dx.doi.org/10.1021/jz100132d
30.
30.O. E. Kalinovskaya and J. K. Vij, J. Chem. Phys. 112, 3262 (2000).
http://dx.doi.org/10.1063/1.480909
31.
31.U. Kaatze, R. Behrends, and R. Pottel, J. Non-Cryst. Solids 305, 19 (2002).
http://dx.doi.org/10.1016/S0022-3093(02)01084-0
32.
32.L. P. Singh and R. Richert, Phys. Rev. Lett. 109, 167802 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.167802
33.
33.R. Minami, K. Itoh, H. Takahashi, and K. Higasi, J. Chem. Phys. 73, 3396 (1980).
34.
34.C. Gainaru, R. Meier, S. Schildmann, C. Lederle, W. Hiller, E. A. Rössler, and R. Böhmer, Phys. Rev. Lett. 105, 258303 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.258303
35.
35.R. Behrends and U. Kaatze, J. Phys. Chem. A 105, 5829 (2001).
http://dx.doi.org/10.1021/jp0103777
36.
36.C. Gainaru, R. Figuli, T. Hecksher, B. Jakobsen, J. C. Dyre, M. Wilhelm, and Böhmer, Phys. Rev. Lett. 112, 098301 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.098301
37.
37.C. Gainaru, M. Wikarek, S. Pawlus, M. Paluch, R. Figuli, M. Wilhelm, T. Hecksher, B. Jakobsen, J. C. Dyre, and R. Böhmer, Colloid Polym. Sci. 292, 1913 (2014).
http://dx.doi.org/10.1007/s00396-014-3274-0
38.
38.K. Adrjanowicz, B. Jakobsen, T. Hecksher, K. Kaminski, M. Dulski, M. Paluch, and K. Niss, J. Chem. Phys. 143, 181102 (2015).
http://dx.doi.org/10.1063/1.4935510
39.
39.J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 4th ed. (Elsevier, 2013).
40.
40.J. Bosse, W. Götze, and M. Lücke, Phys. Rev. A 17, 434 (1978).
http://dx.doi.org/10.1103/PhysRevA.17.434
41.
41.W. Götze and L. Sjögren, Rep. Prog. Phys. 55, 241 (1992).
http://dx.doi.org/10.1088/0034-4885/55/3/001
42.
42.S. P. Das, Rev. Mod. Phys. 76, 785 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.785
43.
43.R. Evans, Adv. Phys. 28, 143 (1979).
http://dx.doi.org/10.1080/00018737900101365
44.
44.Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.980
45.
45.R. Evans, “Density functionals in the theory of nonuniform fluids,” in Fundamentals of Inhomogeneous Fluids (Marcel Dekker, 1992), pp. 85176.
46.
46.M. Dzida and U. Kaatze, J. Phys. Chem. B 119, 12480 (2015).
http://dx.doi.org/10.1021/acs.jpcb.5b07093
47.
47.B. Igarashi, T. Christensen, E. H. Larsen, N. B. Olsen, I. H. Pedersen, T. Rasmussen, and J. C. Dyre, Rev. Sci. Instrum. 79, 045105 (2008).
http://dx.doi.org/10.1063/1.2903419
48.
48.B. Igarashi, T. Christensen, E. H. Larsen, N. B. Olsen, I. H. Pedersen, T. Rasmussen, and J. C. Dyre, Rev. Sci. Instrum. 79, 045106 (2008).
http://dx.doi.org/10.1063/1.2906401
49.
49.T. Christensen and N. B. Olsen, Phys. Rev. B 49, 15396 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.15396
50.
50.T. Hecksher, N. B. Olsen, K. A. Nelson, J. C. Dyre, and T. Christensen, J. Chem. Phys. 138, 12A543 (2013).
http://dx.doi.org/10.1063/1.4789946
51.
51.See supplementary material at http://dx.doi.org/10.1063/1.4947470 for details on experiments and data analysis.[Supplementary Material]
52.
52.C. Gainaru, S. Kastner, F. Mayr, P. Lunkenheimer, S. Schildmann, H. J. Weber, W. Hiller, A. Loidl, and R. Böhmer, Phys. Rev. Lett. 107, 118304 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.118304
53.
53.D. Gundermann, K. Niss, T. Christensen, J. C. Dyre, and T. Hecksher, J. Chem. Phys. 140, 244508 (2014).
http://dx.doi.org/10.1063/1.4883736
54.
54.R. Kono, T. A. Litovitz, and G. E. McDuffe, J. Chem. Phys. 45, 1790 (1966).
http://dx.doi.org/10.1063/1.1727831
55.
55.F. Palombo, P. Sassi, M. Paolantoni, A. Morresi, and R. S. Cataliotti, J. Phys. Chem. B 110, 18017 (2006).
http://dx.doi.org/10.1021/jp062614h
56.
56.C. Klieber, T. Hecksher, T. Pezeril, D. H. Torchinsky, J. C. Dyre, and K. A. Nelson, J. Chem. Phys. 138, 12A544 (2013).
http://dx.doi.org/10.1063/1.4789948
57.
57.C. Maggi, B. Jakobsen, T. Christensen, N. B. Olsen, and J. C. Dyre, J. Phys. Chem. B 112, 16320 (2008).
http://dx.doi.org/10.1021/jp805097r
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/16/10.1063/1.4947470
Loading
/content/aip/journal/jcp/144/16/10.1063/1.4947470
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/16/10.1063/1.4947470
2016-04-28
2016-09-30

Abstract

This work provides the first direct evidence that the puzzling dielectric Debye process observed in mono-alcohols is coupled to density fluctuations. The results open up for an explanation of the Debye process within the framework of conventional liquid-statetheory. The spectral shape of the dynamical bulk modulus of the two studied mono-alcohols, 2-ethyl-1-hexanol and 4-methyl-3-heptanol, is nearly identical to that of their corresponding shear modulus, and thus the supramolecular structures believed to be responsible for the slow dielectric Debye process are manifested in the bulk modulus as in the shear modulus.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/16/1.4947470.html;jsessionid=2Yr33iDREY0U0-m4FwiVQM9Z.x-aip-live-02?itemId=/content/aip/journal/jcp/144/16/10.1063/1.4947470&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/16/10.1063/1.4947470&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/16/10.1063/1.4947470'
Right1,Right2,Right3,