Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/16/10.1063/1.4948412
1.
1.J. F. Ward, C. F. Webb, C. L. Limoli, and J. R. Milligan, in Ionizing Radiation Damage to DNA: Molecular Aspects, edited by S. S. Wallace and R. B. Painter (Wiley-Liss, New York, 1990), p. 43.
2.
2.B. Boudaiffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, Science 287, 1658 (2000).
http://dx.doi.org/10.1126/science.287.5458.1658
3.
3.L. Sanche, Mass Spectrom. Rev. 21, 349 (2002).
http://dx.doi.org/10.1002/mas.10034
4.
4.H. Nikjoo, P. O’Neill, M. Terrissol, and D. T. Goodhead, Radiat. Environ. Biophys. 38, 31 (1999).
http://dx.doi.org/10.1007/s004110050135
5.
5.H. Rabus and H. Nettelbeck, Radiat. Meas. 46, 1522 (2011).
http://dx.doi.org/10.1016/j.radmeas.2011.02.009
6.
6.H. Nettelbeck and H. Rabus, Radiat. Meas. 46, 893 (2011).
http://dx.doi.org/10.1016/j.radmeas.2011.03.029
7.
7.D. Schardt, T. Elsasser, and D. Schulz-Ertner, Rev. Mod. Phys. 82, 383 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.383
8.
8.M. P. Callahan, K. E. Smith, H. James Cleaves, J. Ruzicka, J. C. Stern, D. P. Glavin, C. H. House, and J. P. Dworkin, Proc. Natl. Acad. Sci. U. S. A. 108, 13995 (2011).
http://dx.doi.org/10.1073/pnas.1106493108
9.
9.Z. Martins, O. Botta, M. L. Fogel, M. A. Sephton, D. P. Glavin, J. S. Watson, J. P. Dworkin, A. W. Schwartz, and P. Ehrenfreund, Earth Planet. Sci. Lett. 270, 130 (2008).
http://dx.doi.org/10.1016/j.epsl.2008.03.026
10.
10.S. J. Curran, S. Aalto, and R. S. Booth, Astron. Astrophys., Suppl. Ser. 141, 193 (2000).
http://dx.doi.org/10.1051/aas:2000119
11.
11.S. Chakrabarti and S. K. Chakrabarti, Astron. Astrophys. 354, L6 (2000).
12.
12.V. P. Gupta, P. Tandon, P. Rawat, R. N. Singh, and A. Singh, Astron. Astrophys. 528, A129 (2011).
http://dx.doi.org/10.1051/0004-6361/201015557
13.
13.P. Bernhardt and H. G. Paretzke, Int. J. Mass Spectrom. 223, 579 (2003).
http://dx.doi.org/10.1016/S1387-3806(02)00879-5
14.
14.P. Mozejko and L. Sanche, Radiat. Environ. Biophys. 42, 201 (2003).
http://dx.doi.org/10.1007/s00411-003-0206-7
15.
15.A. Peudon, S. Edel, and M. Terrissol, Radiat. Prot. Dosim. 122, 128 (2006).
http://dx.doi.org/10.1093/rpd/ncl452
16.
16.J. N. Bull, J. W. L. Lee, and C. Vallance, Phys. Chem. Chem. Phys. 16, 10743 (2014).
http://dx.doi.org/10.1039/c4cp00490f
17.
17.W. M. Huo, C. E. Dateob, and G. D. Fletcherb, Radiat. Meas. 41, 1202 (2006).
http://dx.doi.org/10.1016/j.radmeas.2006.04.029
18.
18.M. Vinodkumar, C. Limbachiya, M. Barot, M. Swadia, and A. Barot, Int. J. Mass Spectrom. 339, 16 (2013).
http://dx.doi.org/10.1016/j.ijms.2013.01.004
19.
19.C. Champion, J. Chem. Phys. 138, 184306 (2013).
http://dx.doi.org/10.1063/1.4802962
20.
20.P. J. M. van der Burgt, Eur. Phys. J. D 68, 135 (2014).
http://dx.doi.org/10.1140/epjd/e2014-40818-y
21.
21.P. J. M. van der Burgt, F. Mahon, G. Barrett, and M. L. Gradziel, Eur. Phys. J. D 68, 151 (2014).
http://dx.doi.org/10.1140/epjd/e2014-40699-0
22.
22.P. J. M. van der Burgt, Eur. Phys. J. D 69, 173 (2015).
http://dx.doi.org/10.1140/epjd/e2015-60200-y
23.
23.I. I. Shafranyosh, M. I. Sukhoviya, and M. I. Shafranyosh, J. Phys. B 39, 4155 (2006).
http://dx.doi.org/10.1088/0953-4075/39/20/013
24.
24.I. I. Shafranyosh, M. I. Sukhoviya, M. I. Shafranyosh, and L. L. Shimon, Tech. Phys. 53, 1538 (2008).
http://dx.doi.org/10.1134/S1063784208120025
25.
25.B. F. Minaev, M. I. Shafranyosh, Y. Y. Svida, M. I. Sukhoviya, I. I. Shafranyosh, G. V. Baryshnikov, and V. A. Minaeva, J. Chem. Phys. 140, 175101 (2014).
http://dx.doi.org/10.1063/1.4871881
26.
26.I. I. Shafranyosh and M. I. Sukhoviya, J. Chem. Phys. 137, 184303 (2012).
http://dx.doi.org/10.1063/1.4765307
27.
27.S. K. Srivastava, A. Chutjian, and S. Trajmar, J. Chem. Phys. 63, 2659 (1975).
http://dx.doi.org/10.1063/1.431659
28.
28.E. Krishnakumar, Int. J. Mass Spectrom. Ion Processes 97, 283 (1990).
http://dx.doi.org/10.1016/0168-1176(90)85005-M
29.
29.M. A. Rahman and E. Krisnakumar, Int. J. Mass Spectrom. 392, 145 (2015).
http://dx.doi.org/10.1016/j.ijms.2015.10.003
30.
30.D. Ferro, L. Bencivenni, R. Teghil, and R. Mastromarino, Thermochim. Acta 42, 75 (1980).
http://dx.doi.org/10.1016/0040-6031(80)87117-6
31.
31.W. Zielenkiewicz, J. Chem. Eng. Data 45, 626 (2000).
http://dx.doi.org/10.1021/je000034m
32.
32.C. J. Colyer, Ph.D. thesis, University of Adelaide, 2011.
33.
33.M. A. Rahman, S. Gangopadhyay, C. Limbachiya, K. N. Joshipura, and E. Krishnakumar, Int. J. Mass Spectrom. 319, 48 (2012).
http://dx.doi.org/10.1016/j.ijms.2012.05.005
34.
34.R. Rejoub, B. G. Lindsay, and R. F. Stebbings, Phys. Rev. A 65, 042713 (2002).
http://dx.doi.org/10.1103/PhysRevA.65.042713
35.
35.M. M. Dawley, K. Tanzer, W. A. Cantrell, P. Plattner, N. R. Brinkmann, P. Scheier, S. Denifl, and S. Ptasinska, Phys. Chem. Chem. Phys. 16, 25039 (2014).
http://dx.doi.org/10.1039/C4CP03452J
36.
36.J. L. Occolowitz, Chem. Commun. 1968, 1226.
http://dx.doi.org/10.1039/c19680001226
37.
37.M. G. Barrio, D. I. C. Scopes, J. B. Holtwick, and N. J. Leonard, Proc. Natl. Acad. Sci. U. S. A. 78, 3986 (1981).
http://dx.doi.org/10.1073/pnas.78.7.3986
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/16/10.1063/1.4948412
Loading
/content/aip/journal/jcp/144/16/10.1063/1.4948412
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/16/10.1063/1.4948412
2016-04-28
2016-12-04

Abstract

No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/16/1.4948412.html;jsessionid=pZsySh3Oag_tDabJeRs40tjz.x-aip-live-03?itemId=/content/aip/journal/jcp/144/16/10.1063/1.4948412&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/16/10.1063/1.4948412&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/16/10.1063/1.4948412'
Right1,Right2,Right3,