Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/17/10.1063/1.4948547
1.
1.G. Czakó and J. M. Bowman, J. Phys. Chem. A 118, 2839 (2014).
http://dx.doi.org/10.1021/jp500085h
2.
2.K. Liu, J. Chem. Phys. 142, 080901 (2015).
http://dx.doi.org/10.1063/1.4913323
3.
3.G. Czakó and J. M. Bowman, Phys. Chem. Chem. Phys. 13, 8306 (2011).
http://dx.doi.org/10.1039/c0cp02456b
4.
4.T. Westermann, W. Eisfeld, and U. Manthe, J. Chem. Phys. 139, 014309 (2013).
http://dx.doi.org/10.1063/1.4812251
5.
5.W. W. Harper, S. A. Nizkorodov, and D. J. Nesbitt, J. Chem. Phys. 113, 3670 (2000).
http://dx.doi.org/10.1063/1.1287398
6.
6.J. J. Lin, J. Zhou, W. Shiu, and K. Liu, Science 300, 966 (2003).
http://dx.doi.org/10.1126/science.1083672
7.
7.J. G. Zhou, J. J. Lin, and K. Liu, J. Chem. Phys. 119, 8289 (2003).
http://dx.doi.org/10.1063/1.1611877
8.
8.J. G. Zhou, J. J. Lin, W. C. Shiu, S. C. Pu, and K. Liu, J. Chem. Phys. 119, 2538 (2003).
http://dx.doi.org/10.1063/1.1587112
9.
9.W. Shiu, J. J. Lin, and K. Liu, Phys. Rev. Lett. 92, 103201 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.103201
10.
10.J. Zhou, J. J. Lin, and K. Liu, J. Chem. Phys. 121, 813 (2004).
http://dx.doi.org/10.1063/1.1761051
11.
11.D. Troya, J. Millán, I. Baños, and M. González, J. Chem. Phys. 120, 5181 (2004).
http://dx.doi.org/10.1063/1.1637035
12.
12.J. F. Castillo, F. J. Aoiz, L. Bañares, E. Martinez-Nuñez, A. Fernández-Ramos, and S. Vazquez, J. Phys. Chem. A 109, 8459 (2005).
http://dx.doi.org/10.1021/jp052098f
13.
13.J. Zhou, W. Shiu, J. J. Lin, and K. Liu, J. Chem. Phys. 124, 104309 (2006).
http://dx.doi.org/10.1063/1.2150437
14.
14.J. G. Zhou, J. J. Lin, W. C. Shiu, and K. Liu, Phys. Chem. Chem. Phys. 8, 3000 (2006).
http://dx.doi.org/10.1039/B602434C
15.
15.J. Espinosa-García, J. L. Bravo, and C. Rangel, J. Phys. Chem. A 111, 2761 (2007).
http://dx.doi.org/10.1021/jp0688759
16.
16.J. Espinosa-García, J. Phys. Chem. A 111, 3497 (2007).
http://dx.doi.org/10.1021/jp0707790
17.
17.G. Nyman and J. Espinosa-Garcia, J. Phys. Chem. A 111, 11943 (2007).
http://dx.doi.org/10.1021/jp076500x
18.
18.J. Espinosa-García and J. L. Bravo, J. Phys. Chem. A 112, 6059 (2008).
http://dx.doi.org/10.1021/jp711218p
19.
19.J. Espinosa-García, J. Chem. Phys. 130, 054305 (2009).
http://dx.doi.org/10.1063/1.3069632
20.
20.W. Zhang, H. Kawamata, and K. Liu, Science 325, 303 (2009).
http://dx.doi.org/10.1126/science.1175018
21.
21.G. Czakó, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 130, 084301 (2009).
http://dx.doi.org/10.1063/1.3068528
22.
22.G. Czakó and J. M. Bowman, J. Am. Chem. Soc. 131, 17534 (2009).
http://dx.doi.org/10.1021/ja906886z
23.
23.G. Czakó and J. M. Bowman, J. Chem. Phys. 131, 244302 (2009).
http://dx.doi.org/10.1063/1.3276633
24.
24.T. Chu, K. Han, and J. Espinosa-Garcia, J. Chem. Phys. 131, 244303 (2009).
http://dx.doi.org/10.1063/1.3273139
25.
25.G. Czakó, Q. A. Shuai, K. Liu, and J. M. Bowman, J. Chem. Phys. 133, 131101 (2010).
http://dx.doi.org/10.1063/1.3490795
26.
26.F. Wang and K. Liu, J. Phys. Chem. Lett. 2, 1421 (2011).
http://dx.doi.org/10.1021/jz200590m
27.
27.M. Cheng, Y. Feng, Y. Du, Q. Zhu, W. Zheng, G. Czakó, and J. M. Bowman, J. Chem. Phys. 134, 191102 (2011).
http://dx.doi.org/10.1063/1.3591179
28.
28.H. F. von Horsten and D. C. Clary, Phys. Chem. Chem. Phys. 13, 4340 (2011).
http://dx.doi.org/10.1039/c0cp02661a
29.
29.H. Kawamata, W. Q. Zhang, and K. Liu, Faraday Discuss. 157, 89 (2012).
http://dx.doi.org/10.1039/c2fd20004j
30.
30.T. I. Yacovitch, E. Garand, J. B. Kim, C. Hock, T. Theis, and D. M. Neumark, Faraday Discuss. 157, 399 (2012).
http://dx.doi.org/10.1039/c2fd20011b
31.
31.R. Wodraszka, J. Palma, and U. Manthe, J. Phys. Chem. A 116, 11249 (2012).
http://dx.doi.org/10.1021/jp3052642
32.
32.J. Palma and U. Manthe, J. Chem. Phys. 137, 044306 (2012).
http://dx.doi.org/10.1063/1.4737382
33.
33.F. Wang and K. Liu, J. Phys. Chem. A 117, 8536 (2013).
http://dx.doi.org/10.1021/jp4014866
34.
34.D. Wang and G. Czakó, J. Phys. Chem. A 117, 7124 (2013).
http://dx.doi.org/10.1021/jp4005778
35.
35.T. Westermann, J. B. Kim, M. L. Weichman, C. Hock, T. I. Yacovitch, J. Palma, D. M. Neumark, and U. Manthe, Angew. Chem., Int. Ed. 53, 1122 (2014).
http://dx.doi.org/10.1002/anie.201307822
36.
36.J. Yang, D. Zhang, B. Jiang, D. Dai, G. Wu, D. Zhang, and X. Yang, J. Phys. Chem. Lett. 5, 1790 (2014).
http://dx.doi.org/10.1021/jz5007252
37.
37.J. Yang, D. Zhang, Z. Chen, F. Blauert, B. Jiang, D. Dai, G. Wu, D. Zhang, and X. Yang, J. Chem. Phys. 143, 044316 (2015).
http://dx.doi.org/10.1063/1.4927504
38.
38.J. Palma and U. Manthe, J. Phys. Chem. A 119, 12209 (2015).
http://dx.doi.org/10.1021/acs.jpca.5b06184
39.
39.J. Espinosa-Garcia, J. Phys. Chem. A 120, 5 (2016).
http://dx.doi.org/10.1021/acs.jpca.5b10399
40.
40.D. Schäpers and U. Manthe, “Quasi-bound states of the F⋅CH4 complex,” J. Phys. Chem. A (published online).
http://dx.doi.org/10.1021/acs.jpca.5b11694
41.
41.J. Palma and D. C. Clary, J. Chem. Phys. 112, 1859 (2000).
http://dx.doi.org/10.1063/1.480749
42.
42.M. Yang, D. H. Zhang, and S.-Y. Lee, J. Chem. Phys. 117, 9539 (2002).
http://dx.doi.org/10.1063/1.1524181
43.
43.R. Liu, H. Xiong, and M. Yang, J. Chem. Phys. 137, 174113 (2012).
http://dx.doi.org/10.1063/1.4764358
44.
44.R. Liu, M. Yang, G. Czakó, J. M. Bowman, J. Li, and H. Guo, J. Phys. Chem. Lett. 3, 3776 (2012).
http://dx.doi.org/10.1021/jz301735m
45.
45.B. Jiang, R. Liu, J. Li, D. Xie, M. Yang, and H. Guo, Chem. Sci. 4, 3249 (2013).
http://dx.doi.org/10.1039/c3sc51040a
46.
46.R. Liu, F. Wang, B. Jiang, G. Czakó, M. Yang, K. Liu, and H. Guo, J. Chem. Phys. 141, 074310 (2014).
http://dx.doi.org/10.1063/1.4892598
47.
47.Y. Wang, J. Li, H. Guo, and M. Yang, Theor. Chem. Acc. 133, 1555 (2014).
http://dx.doi.org/10.1007/s00214-014-1555-9
48.
48.N. Liu and M. Yang, J. Chem. Phys. 143, 134305 (2015).
http://dx.doi.org/10.1063/1.4931833
49.
49.Y. Wang, J. Li, L. Chen, Y. Lu, M. Yang, and H. Guo, J. Chem. Phys. 143, 154307 (2015).
http://dx.doi.org/10.1063/1.4933240
50.
50.J. M. Bowman, J. Phys. Chem. 95, 4960 (1991).
http://dx.doi.org/10.1021/j100166a014
51.
51.M. Qiu, Z. Ren, L. Che, D. X. Dai, S. Harich, X. Wang, X. Yang, C. Xu, D. Xie, M. Gustafasson, R. T. Skodje, Z. Sun, and D. H. Zhang, Science 311, 1440 (2006).
http://dx.doi.org/10.1126/science.1123452
52.
52.M. Tizniti, S. D. Le Picard, F. Lique, C. Berteloite, A. Canosa, M. H. Alexander, and I. R. Sims, Nat. Chem. 6, 141 (2014).
http://dx.doi.org/10.1038/nchem.1835
53.
53.B. Zhao and H. Guo, J. Phys. Chem. Lett. 6, 676 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00071
54.
54.B. Jiang and H. Guo, J. Chem. Phys. 138, 234104 (2013).
http://dx.doi.org/10.1063/1.4810007
55.
55.H. Guo and B. Jiang, Acc. Chem. Res. 47, 3679 (2014).
http://dx.doi.org/10.1021/ar500350f
56.
56.B. Jiang and H. Guo, J. Chin. Chem. Soc. 61, 847 (2014).
http://dx.doi.org/10.1002/jccs.201400158
57.
57.S. Yan, Y. T. Wu, B. Zhang, X.-F. Yue, and K. Liu, Science 316, 1723 (2007).
http://dx.doi.org/10.1126/science.1142313
58.
58.F. Wang, J.-S. Lin, Y. Cheng, and K. Liu, J. Phys. Chem. Lett. 4, 323 (2013).
http://dx.doi.org/10.1021/jz302017e
59.
59.Z. Zhang, Y. Zhou, D. H. Zhang, G. Czakó, and J. M. Bowman, J. Phys. Chem. Lett. 3, 3416 (2012).
http://dx.doi.org/10.1021/jz301649w
60.
60.B. Jiang, J. Li, and H. Guo, J. Chem. Phys. 140, 034112 (2014).
http://dx.doi.org/10.1063/1.4861668
61.
61.A. Li, Y. Li, H. Guo, K.-C. Lau, Y. Xu, B. Xiong, Y.-C. Chang, and C. Y. Ng, J. Chem. Phys. 140, 011102 (2014).
http://dx.doi.org/10.1063/1.4861002
62.
62.R. Welsch and U. Manthe, J. Chem. Phys. 141, 051102 (2014).
http://dx.doi.org/10.1063/1.4891917
63.
63.R. Welsch and U. Manthe, J. Chem. Phys. 141, 174313 (2014).
http://dx.doi.org/10.1063/1.4900735
64.
64.R. Welsch and U. Manthe, J. Phys. Chem. Lett. 6, 338 (2015).
http://dx.doi.org/10.1021/jz502525p
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/17/10.1063/1.4948547
Loading
/content/aip/journal/jcp/144/17/10.1063/1.4948547
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/17/10.1063/1.4948547
2016-05-02
2016-09-25

Abstract

The mode specific reactivity of the F + CHD → HF + CDreaction is investigated using an eight-dimensional quantum dynamical model on a recently developed based full-dimensional potential energy surface. Our results indicate prominent resonance structures at low collision energies and absence of an energy threshold in reaction probabilities. It was also found that excitation of the C–D stretching or CD umbrella mode has a relatively small impact on reactivity. On the other hand, the excitation of the C–H vibration () in CHD is shown to significantly increase the reactivity, which, like several recent quasi-classical trajectory studies, is at odds with the available experimental data. Possible sources of the disagreement are discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/17/1.4948547.html;jsessionid=2kNaaU0_GPIXq-OTFGuUeZjH.x-aip-live-03?itemId=/content/aip/journal/jcp/144/17/10.1063/1.4948547&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/17/10.1063/1.4948547&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/17/10.1063/1.4948547'
Right1,Right2,Right3,