Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. Barbatti, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 1, 620 (2011).
B. Curchod, U. Rothlisberger, and I. Tavernelli, ChemPhysChem 14, 1314 (2013).
E. Tapavicza, G. L. Bellchambers, J. Vincent, and F. Furche, Phys. Chem. Chem. Phys. 15, 18336 (2013).
M. Barbatti and R. Crespo-Otero, Top. Curr. Chem. 368, 415 (2016).
J. Tully, J. Chem. Phys. 93, 1061 (1990).
S. Hammes-Schiffer and J. Tully, J. Chem. Phys. 101, 4657 (1994).
P. Dral, X. Wu, L. Spörkel, A. Koslowski, W. Weber, R. Steiger, M. Scholten, and W. Thiel, J. Chem. Theory Comput. 12, 1082 (2016).
P. Dral, X. Wu, L. Spörkel, A. Koslowski, and W. Thiel, J. Chem. Theory Comput. 12, 1097 (2016).
A. Koslowski, M. Beck, and W. Thiel, J. Comput. Chem. 24, 714 (2003).
S. Patchkovskii, A. Koslowski, and W. Thiel, Theor. Chem. Acc. 114, 84 (2005).
W. Thiel, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4, 145 (2014).
G. Cui, Z. Lan, and W. Thiel, J. Am. Chem. Soc. 134, 1662 (2012).
G. Cui and W. Thiel, Angew. Chem., Int. Ed. 52, 433 (2013).
L. Spörkel, G. Cui, and W. Thiel, J. Phys. Chem. A 117, 4574 (2013).
L. Spörkel, G. Cui, A. Koslowski, and W. Thiel, J. Phys. Chem. A 118, 152 (2014).
L. Spörkel, J. Jankowska, and W. Thiel, J. Phys. Chem. B 119, 2702 (2014).
A. Nikiforov, J. A. Gamez, W. Thiel, and M. Filatov, J. Phys. Chem. Lett. 7, 105 (2016).
T. Keal, M. Wanko, and W. Thiel, Theor. Chem. Acc. 123, 145 (2009).
E. Fabiano, T. Keal, and W. Thiel, Chem. Phys. 349, 334 (2008).
B. G. Levine, C. Ko, J. Quenneville, and T. J. Martinez, Mol. Phys. 104, 1039 (2006).
M. D. Hack, A. W. Jasper, Y. L. Volobuev, D. W. Schwenke, and D. G. Truhlar, J. Phys. Chem. A 103, 6309 (1999).
A. W. Jasper, S. N. Stechmann, and D. G. Truhlar, J. Chem. Phys. 116, 5424 (2002).
S. Fernandez-Alberti, A. E. Roitberg, T. Nelson, and S. Tretiak, J. Chem. Phys. 137, 014512 (2012).
L. Wang and O. V. Prezhdo, J. Phys. Chem. Lett. 5, 713 (2014).
L. Wang, R. Long, and O. V. Prezhdo, Annu. Rev. Phys. Chem. 66, 549 (2015).
L. Wang and D. Beljonne, J. Phys. Chem. Lett. 4, 1888 (2013).
L. Wang, D. Trivedi, and O. V. Prezhdo, J. Chem. Theory Comput. 10, 3598 (2014).
G. Granucci, M. Persico, and A. Toniolo, J. Chem. Phys. 114, 10608 (2001).
F. Plasser, G. Granucci, J. Pittner, M. Barbatti, M. Persico, and H. Lischka, J. Chem. Phys. 137, 22A514 (2012).

Data & Media loading...


Article metrics loading...



Trajectory surface hopping (TSH) simulations are often performed in combination with active-space multi-reference configuration interaction (MRCI) treatments. Technical problems may arise in such simulations if active and inactive orbitals strongly mix and switch in some particular regions. We propose to use adaptive time steps when such regions are encountered in TSH simulations. For this purpose, we present a computational protocol that is easy to implement and increases the computational effort only in the critical regions. We test this procedure through TSH simulations of a GFP chromophore model (OHBI) and a light-driven rotary molecular motor (F-NAIBP) on semiempirical MRCI potential energy surfaces, by comparing the results from simulations with adaptive time steps to analogous ones with constant time steps. For both test molecules, the number of successful trajectories without technical failures rises significantly, from 53% to 95% for OHBI and from 25% to 96% for F-NAIBP. The computed excited-state lifetime remains essentially the same for OHBI and increases somewhat for F-NAIBP, and there is almost no change in the computed quantum efficiency for internal rotation in F-NAIBP. We recommend the general use of adaptive time steps in TSH simulations with active-space CI methods because this will help to avoid technical problems, increase the overall efficiency and robustness of the simulations, and allow for a more complete sampling.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd