Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/19/10.1063/1.4950845
1.
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133-A1138 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
2.
R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989).
3.
J. P. Perdew and S. Kurth, “Density functionals for non-relativistic Coulomb systems in the new century,” in A Primer in Density Functional Theory, edited by C. Fiolhais, F. Nogueira, and M. Marques (Springer Lecture Notes in Physics, 2003), Vol. 620, pp. 155.
4.
J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
5.
J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13244
6.
J. Sun, J. P. Perdew, and M. Seidl, Phys. Rev. B 81, 085123 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.085123
7.
R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).
http://dx.doi.org/10.1103/RevModPhys.61.689
8.
D. C. Langreth and M. J. Mehl, Phys. Rev. B 28, 1809 (1983);
http://dx.doi.org/10.1103/PhysRevB.28.1809
Erratum, D. C. Langreth and M. J. Mehl, Phys. Rev. B 29, 2310 (1984).
http://dx.doi.org/10.1103/physrevb.29.2310.2
9.
C. D. Hu and D. C. Langreth, Phys. Scr. 32, 391 (1985).
http://dx.doi.org/10.1088/0031-8949/32/4/024
10.
J. P. Perdew, Phys. Rev. Lett. 55, 1665 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.1665
11.
A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
12.
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.6671
13.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
14.
C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
15.
J. P. Perdew, A. Ruzsinszky, J. Sun, and K. Burke, J. Chem. Phys. 140, 18A533 (2014).
http://dx.doi.org/10.1063/1.4870763
16.
J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.036402
17.
J. Sun, B. Xiao, Y. Fang, R. Haunschild, P. Hao, A. Ruzsinszky, G. I. Csonka, G. E. Scuseria, and J. P. Perdew, Phys. Rev. Lett. 111, 106401 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.106401
18.
G. L. Oliver and J. P. Perdew, Phys. Rev. A 20, 397 (1979).
http://dx.doi.org/10.1103/PhysRevA.20.397
19.
P.-F. Loos and P. M. W. Gill, Phys. Rev. Lett. 103, 123008 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.123008
20.
P.-F. Loos and P. M. W. Gill, J. Chem. Phys. 131, 241101 (2009).
http://dx.doi.org/10.1063/1.3275519
21.
E. H. Lieb and S. Oxford, Int. J. Quantum Chem. 19, 427 (1981).
http://dx.doi.org/10.1002/qua.560190306
22.
S. R. Gadre, L. J. Bartolotti, and N. C. Handy, J. Chem. Phys. 72, 1034 (1980).
http://dx.doi.org/10.1063/1.439270
23.
P.-F. Loos, C. J. Ball, and P. M. W. Gill, J. Chem. Phys. 140, 18A524 (2014).
http://dx.doi.org/10.1063/1.4867910
24.
M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985).
http://dx.doi.org/10.1103/PhysRevA.32.2010
25.
S. Ivanov and M. Levy, J. Phys. Chem. A 102, 3151 (1998).
http://dx.doi.org/10.1021/jp9731415
26.
S. J. Chakravorty, S. R. Gwaltney, E. R. Davidson, F. A. Parpia, and C. F. P. Fischer, Phys. Rev. A 47, 3649 (1993).
http://dx.doi.org/10.1103/PhysRevA.47.3649
27.
E. P. Wigner, Phys. Rev. 46, 1002 (1934).
http://dx.doi.org/10.1103/PhysRev.46.1002
28.
E. P. Wigner, Trans. Faraday Soc. 34, 678 (1938).
http://dx.doi.org/10.1039/tf9383400678
29.
M. Taut, Phys. Rev. A 48, 3561 (1993).
http://dx.doi.org/10.1103/PhysRevA.48.3561
30.
J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.146401
31.
M. R. Pederson, J. P. Perdew, and A. Ruzsinszky, J. Chem. Phys. 140, 121103 (2014).
http://dx.doi.org/10.1063/1.4869581
32.
P. W. Ayers, M. Levy, and Á. Nagy, J. Chem. Phys. 143, 191101 (2015).
http://dx.doi.org/10.1063/1.4934963
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/19/10.1063/1.4950845
Loading
/content/aip/journal/jcp/144/19/10.1063/1.4950845
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/19/10.1063/1.4950845
2016-05-17
2016-12-07

Abstract

The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/19/1.4950845.html;jsessionid=dCmfRGH6JJAd33wNxq233xQE.x-aip-live-03?itemId=/content/aip/journal/jcp/144/19/10.1063/1.4950845&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/19/10.1063/1.4950845&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/19/10.1063/1.4950845'
Right1,Right2,Right3,